
Transparent Data Encryption
Version 15

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. Built at 2024-04-25T23:28:29

3
5
9

11
12
12
13
14
14
15

1 Transparent Data Encryption
2 Securing the data encryption key
3 Enabling TDE
4 Limitations
5 Commands affected by TDE
6 Troubleshooting with encrypted WAL files
7 Working with encrypted backup files
8 Upgrading a TDE system
9 Single-user mode
10 Testing a TDE configuration

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 2

1 Transparent Data Encryption

Transparent data encryption (TDE) is an optional feature supported by EDB Postgres Advanced Server and EDB Postgres Extended Server from version
15.

It encrypts any user data stored in the database system. This encryption is transparent to the user. User data includes the actual data stored in tables
and other objects as well as system catalog data such as the names of objects.

What's encrypted with TDE?

TDE encrypts:

The files underlying tables, sequences, indexes, including TOAST tables and system catalogs, and including all forks. These files are known as
data files.

The write-ahead log (WAL).

Various temporary files that are used during query processing and database system operation.

ImplicationsImplications

Any WAL fetched from a server using TDE, including by streaming replication and archiving, is encrypted.

A physical replica is necessarily encrypted (or not encrypted) in the same way and using the same keys as its primary server.

If a server uses TDE, a base backup is automatically encrypted.

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 3

The following aren't encrypted or otherwise disguised by TDE:

Metadata internal to operating the database system that doesn't contain user data, such as the transaction status (for example, pg_subtrans
and pg_xact).

The file names and file system structure in the data directory. That means that the overall size of the database system, the number of databases,
the number of tables, their relative sizes, as well as file system metadata such as last access time are all visible without decryption.

Data in foreign tables.

The server diagnostics log.

Configuration files.

ImplicationsImplications

Logical replication isn't affected by TDE. Publisher and subscriber can have different encryption settings. The payload of the logical
replication protocol isn't encrypted. (You can use SSL.)

How does TDE affect performance?

The performance impact of TDE is low. For details, see the Transparent Data Encryption Impacts on EDB Postgres Advanced Server 15 blog.

How does TDE work?

TDE prevents unauthorized viewing of data in operating system files on the database server and on backup storage. Data becomes unintelligible for
unauthorized users if it's stolen or misplaced.

Data encryption and decryption is managed by the database and doesn't require application changes or updated client drivers.

EDB Postgres Advanced Server and EDB Postgres Extended Server provide hooks to key management that's external to the database. These hooks
allow for simple passphrase encrypt/decrypt or integration with enterprise key management solutions. See Securing the data encryption key for more
information.

How does TDE encrypt data?

Starting with version 16, EDB TDE introduces the option to choose between AES-128 and AES-256 encryption algorithms during the initialization of
the Postgres cluster. The choice between AES-128 and AES-256 hinges on balancing performance and security requirements. AES-128 is commonly
advised for environments where performance efficiency and lower power consumption are pivotal, making it suitable for most applications.
Conversely, AES-256 is recommended for scenarios demanding the highest level of security, often driven by regulatory mandates.

TDE uses AES-128-XTS or AES-256-XTS algorithms for encrypting data files. XTS uses a second value, known as the tweak value, to enhance the
encryption. The XTS tweak value with TDE uses the database OID, the relfilenode, and the block number.

For write-ahead log (WAL) files, TDE uses AES-128-CTR or AES-256-CTR, incorporating the WAL's log sequence number (LSN) as the counter
component.

Temporary files that are accessed by block are also encrypted using AES-128-XTS or AES-256-XTS. Other temporary files are encrypted using AES-
128-CBC or AES-256-CBC.

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 4

https://www.enterprisedb.com/blog/TDE-Postgres-Advanced-Server-15-Launch

How is data stored on disk with TDE?

In this example, the data in the tbfoo table is encrypted. The pg_relation_filepath function locates the data file corresponding to the
tbfoo table.

Grepping the data looking for characters doesn't return anything. Viewing the last five lines returns the encrypted data:

$ hexdump -C 16416 | grep abc
$

$ hexdump -C 16416 | tail -5
00001fc0 c8 0f 1d c8 9a 63 3d dc 7d 4e 68 98 b8 f2 5e 0a |.....c=.}Nh...^.|
00001fd0 9a eb 20 1d 59 ad be 94 6e fd d5 6e ed 0a 72 8c |.. .Y...n..n..r.|
00001fe0 7b 14 7f de 5b 63 e3 84 ba 6c e7 b0 a3 86 aa b9 |{...[c...l......|
00001ff0 fe 4f 07 50 06 b7 ef 6a cd f9 84 96 b2 4b 25 12 |.O.P...j.....K%.|
00002000

2 Securing the data encryption key

The key for transparent data encryption (the data key) is normally generated by initdb and stored in a file pg_encryption/key.bin under
the data directory. This file actually contains several keys that are used for different purposes at run time. However, in terms of the data key, it
contains a single sequence of random bytes.

Without any further action, this file contains the key in plaintext, which isn't secure. Anyone with access to the encrypted data directory has access to
the plaintext key, which defeats the purpose of encryption. Therefore, this setup is suitable only for testing purposes.

To secure the data key properly, “wrap” it by encrypting it with another key. Broadly, you can use two approaches to arrange this:

Protect the data key with a passphrase. A wrapping key is derived from the passphrase and used to encrypt the data key.

The wrapping key is stored elsewhere, for example, in a key management system, also known as a key store. This second key is also called the
key-wrapping key or master key.

If you don't want key wrapping, for example for testing, then you must set the wrap and unwrap commands to the special value - . This setting
specifies to use the key from the file without further processing. This approach differs from not setting a wrap or unwrap command at all, and from
setting either/both to an empty string. Having no wrap or unwrap command set when transparent data encryption is used results in a fatal error when
running an affected utility program.

Postgres leaves this configuration up to the user, which allows tailoring the setup to local requirements and integrating with existing key
management software or similar. To configure the data key protection, you must specify a pair of external commands that take care of the wrapping
(encrypting) and unwrapping (decryption).

insertinsert intointo tbfoo valuesvalues
('abc','123');
INSERTINSERT 0 1

selectselect
pg_relation_filepath('tbfoo');

 pg_relation_filepath

 base//5//16416

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 5

Using a passphrase

You can protect the data key with a passphrase using the openssl command line utility. The following is an example that sets up this protection:

initdb -D datadir -y --key-wrap-command='openssl enc -e -aes-128-cbc -pbkdf2 -out "%p"' --key-unwrap-
command='openssl enc -d -aes-128-cbc -pbkdf2 -in "%p"'

This example wraps the randomly generated data key (done internally by initdb) by encrypting it using the AES-128-CBC (AESKW) algorithm. The
encryption uses a key derived from a passphrase using the PBKDF2 key derivation function and a randomly generated salt. The terminal prompts for
the passphrase. (See the openssl-enc manual page for details about these options. Available options vary across versions.) The placeholder %p is
replaced with the name of the file to store the wrapped key.

The unwrap command performs the opposite operation. initdb doesn't need the unwrap operation. However, it stores it in the postgresql.conf
file of the initialized cluster, which uses it when it starts up.

The key wrap command receives the plaintext key on standard input and needs to put the wrapped key at the file system location specified by the %p
placeholder. The key unwrap command needs to read the wrapped key from the file system location specified by the %p placeholder and write the
unwrapped key to the standard output.

Utility programs like pg_rewind and pg_upgrade operate directly on the data directory or copies, such as backups. These programs also need to be told
about the key unwrap command, depending on the circumstances. They each have command-line options for this purpose.

To simplify operations, you can also set the key wrap and unwrap commands in environment variables. These are accepted by all affected applications
if you don't provide the corresponding command line options. For example:

PGDATAKEYWRAPCMD='openssl enc -e -aes-128-cbc -pbkdf2 -out "%p"'
PGDATAKEYUNWRAPCMD='openssl enc -d -aes-128-cbc -pbkdf2 -in "%p"'
export PGDATAKEYWRAPCMD PGDATAKEYUNWRAPCMD

Key unwrap commands that prompt for passwords on the terminal don't work when the server is started by pg_ctl or through service managers such
as systemd. The server is detached from the terminal in those environments. If you want an interactive password prompt on server start, you need a
more elaborate configuration that fetches the password using some indirect mechanism.

For example, for systemd, you can use systemd-ask-password :

PGDATAKEYWRAPCMD="bash -c 'openssl enc -e -aes-128-cbc -pbkdf2 -out %p -pass file:<(sudo systemd-ask-
password --no-tty)'"
PGDATAKEYUNWRAPCMD="bash -c 'openssl enc -d -aes-128-cbc -pbkdf2 -in %p -pass file:<(sudo systemd-ask-
password --no-tty)'"

You also need an entry like in /etc/sudoers :

postgres ALL = NOPASSWD: /usr/bin/systemd-ask-password

Using a key store

You can use the key store in an external key management system to manage the data encryption key. The tested and supported key stores are:

Amazon AWS Key Management Service (KMS)
Google Cloud - Cloud Key Management Service
HashiCorp Vault (KMIP Secrets Engine and Transit Secrets Engine)

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 6

Microsoft Azure Key Vault
Thales CipherTrust Manager

AWS Key Management Service example

Create a key with AWS Key Management Service:

aws kms create-key
aws kms create-alias --alias-name alias/pg-tde-master-1 --target-key-id "..."

Use the aws kms command with the alias/pg-tde-master-1 key to wrap and unwrap the data encryption key:

PGDATAKEYWRAPCMD='aws kms encrypt --key-id alias/pg-tde-master-1 --plaintext fileb:///dev/stdin --
output text --query CiphertextBlob | base64 -d > "%p"'
PGDATAKEYUNWRAPCMD='aws kms decrypt --key-id alias/pg-tde-master-1 --ciphertext-blob fileb://"%p" --
output text --query Plaintext | base64 -d'

NoteNote

Shell commands with pipes, as in this example, are problematic because the exit status of the pipe is that of the last command. A failure of
the first, more interesting command isn't reported properly. Postgres handles this somewhat by recognizing whether the wrap or unwrap
command wrote nothing. However, it's better to make this more robust. For example, use the pipefail option available in some shells or
the mispipe command available on some operating systems. Put more complicated commands into an external shell script or other
program instead of defining them inline.

Alternatively, you can use the crypt utility to wrap and unwrap the data encryption key:

PGDATAKEYWRAPCMD='crypt encrypt aws --out %p --region us-east-1 --kms alias/pg-tde-master-1'
PGDATAKEYUNWRAPCMD='crypt decrypt aws --in %p --region us-east-1'

Azure Key Vault example

Create a key with Azure Key Vault:

az keyvault key create --vault-name pg-tde --name pg-tde-master-1

Use the az keyvault command with the pg-tde-master-1 key to wrap and unwrap the data encryption key:

PGDATAKEYWRAPCMD='crypt encrypt azure --vaultURL https://pg-tde.vault.azure.net --name pg-tde-master-1
--version fa2bf368449e432085318c5bf666754c --out %p'
PGDATAKEYUNWRAPCMD='crypt decrypt azure --vaultURL https://pg-tde.vault.azure.net --name pg-tde-master-
1 --version fa2bf368449e432085318c5bf666754c --in %p'

This example uses crypt. You can't use the Azure CLI directly for this purpose because it lacks some functionality.

Google Cloud KMS example

Create a key with Google Cloud KMS:

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 7

https://github.com/VirtusLab/crypt
https://github.com/VirtusLab/crypt

gcloud kms keys create pg-tde-master-1 --location=global --keyring=pg-tde --purpose=encryption

Use the az keyvault command with the pg-tde-master-1 key to wrap and unwrap the data encryption key:

PGDATAKEYWRAPCMD='gcloud kms encrypt --plaintext-file=- --ciphertext-file=%p --location=global --
keyring=pg-tde --key=pg-tde-master-1'
PGDATAKEYUNWRAPCMD='gcloud kms decrypt --plaintext-file=- --ciphertext-file=%p --location=global --
keyring=pg-tde --key=pg-tde-master-1'

Alternatively, you can use the crypt utility to wrap and unwrap the data encryption key:

PGDATAKEYWRAPCMD='crypt encrypt gcp --out=%p --location=global --keyring=pg-tde --key=pg-tde-master-1 -
-project your-project-123456'
PGDATAKEYUNWRAPCMD='crypt decrypt gcp --in=%p --location=global --keyring=pg-tde --key=pg-tde-master-1
--project your-project-123456'

HashiCorp Vault Transit Secrets Engine example

enable once
vault secrets enable transit

create a key (pick a name)
vault write -f transit/keys/pg-tde-master-1

PGDATAKEYWRAPCMD='base64 | vault write -field=ciphertext transit/encrypt/pg-tde-master-1 plaintext=- >
%p'
PGDATAKEYUNWRAPCMD='vault write -field=plaintext transit/decrypt/pg-tde-master-1 ciphertext=- < %p |
base64 -d'

Key rotation

To change the master key, manually run the unwrap command specifying the old key. Then feed the result into the wrap command specifying the new
key. Equivalently, if the data key is protected by a passphrase, to change the passphrase, run the unwrap command using the old passphrase. Then
feed the result into the wrap command using the new passphrase. You can perform these operations while the database server is running. The
wrapped data key in the file is used only on startup. It isn't used while the server is running.

Building on the example in Using a passphrase, which uses openssl, to change the passphrase, you can:

cd $PGDATA/pg_encryption/
openssl enc -d -aes-128-cbc -pbkdf2 -in key.bin | openssl enc -e -aes-128-cbc -pbkdf2 -out key.bin.new
mv key.bin.new key.bin

With this method, the decryption and the encryption commands ask for the passphrase on the terminal at the same time, which is awkward and
confusing. An alternative is:

cd $PGDATA/pg_encryption/
openssl enc -d -aes-128-cbc -pbkdf2 -in key.bin -pass pass:<replaceable>ACTUALPASSPHRASE</replaceable>
| openssl enc -e -aes-128-cbc -pbkdf2 -out key.bin.new
mv key.bin.new key.bin

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 8

https://github.com/VirtusLab/crypt

This technique leaks the old passphrase, which is being replaced anyway. openssl supports a number of other ways to supply the passphrases.

When using a key management system, you can connect the unwrap and wrap commands similarly, for example:

cd $PGDATA/pg_encryption/
crypt decrypt aws --in key.bin --region us-east-1 | crypt encrypt aws --out key.bin.new --region us-
east-1 --kms alias/pg-tde-master-2
mv key.bin.new key.bin

NoteNote

You can't change the data key (the key wrapped by the master key) on an existing data directory. If you need to do that, you need to run the
data directory through an upgrade process using pg_dump, pg_upgrade, or logical replication.

3 Enabling TDE

You enable transparent data encryption when you initialize a database cluster using initdb.

Using initdb TDE options

To enable encryption, use the following options with the initdb command or their fallback environment variables:

-y, --data-encryption

Initialize the new database cluster with transparent data encryption. See Transparent Data Encryption for more information. Optionally specify an
AES key length. Valid values are 128 and 256. The default is 128.

--copy-key-from=<file>

Copy the data encryption key from the given location. You can use this option to copy a key from an existing cluster when preparing a new cluster as a
target for pg_upgrade.

--key-wrap-command=<command>

Specify a command to wrap (encrypt) the generated data encryption key. The command must include a placeholder %p that specifies the file to write
the wrapped key to. The unwrapped key is provided to the command on its standard input. If you don't specify this option, the environment variable
PGDATAKEYWRAPCMD is used.

Use the special value - if you don't want to apply any key wrapping command.

You must specify this option or the environment variable fallback if you're using data encryption. See Securing the data encryption key for more
information.

--key-unwrap-command=<command>

Specify a command to unwrap (decrypt) the data encryption key. The command must include a placeholder %p that specifies the file to read the
wrapped key from. The command needs to write the unwrapped key to its standard output. If you don't specify this option, the environment variable
PGDATAKEYUNWRAPCMD is used.

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 9

https://www.postgresql.org/docs/15/app-initdb.html
https://www.enterprisedb.com/docs/tde/latest

Use the special value - if you don't want to apply any key unwrapping command.

You must specify this option or the environment variable fallback if you're using data encryption. See Securing the data encryption key for more
information.

--no-key-wrap

Disable key wrapping. The data encryption key is instead stored in plaintext in the data directory. (This option is a shortcut for setting both the wrap
and the unwrap command to the special value - .)

NoteNote

Using this option isn't secure. Use it only for testing purposes.

If you select data encryption and don't specify this option, then you must provide key wrap and unwrap commands. Otherwise, initdb terminates
with an error.

Using environment variables

To simplify operations, you can set the key wrap and unwrap commands in the environment variables.

For example:

PGDATAKEYWRAPCMD='openssl enc -e -aes128-wrap -pbkdf2 -out "%p"'
PGDATAKEYUNWRAPCMD='openssl enc -d -aes128-wrap -pbkdf2 -in "%p"'
export PGDATAKEYWRAPCMD PGDATAKEYUNWRAPCMD

Setting the key parameter in postgresql.conf

When you enable TDE for a cluster, the initdb command initializes the data_encryption_key_unwrap_command parameter in the
postgresql.conf configuration file. The string specified in data_encryption_key_unwrap_command unwraps (decrypts) the data

encryption key.

The command must contain a placeholder %p , which is replaced with the name of the file containing the key to unwrap. The command must print the
unwrapped (decrypted) key to its standard output.

If you don't specify this parameter, the environment variable PGDATAKEYUNWRAPCMD is used.

Use the special value - if you don't want to apply any key unwrapping command.

You must specify this parameter or the environment variable fallback if you're using data encryption. See Securing the data encryption key for more
information.

You can set this parameter only at server start.

This parameter is normally initialized by initdb . Change it only if you change the key wrap method.

For more information on the configuration files, see PostgreSQL File Locations documentation.

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 10

https://www.postgresql.org/docs/15/runtime-config-file-locations.html

Example

This example uses EDB Postgres Advanced Server 15 running on a Linux platform. It uses openssl to define the passkey to wrap and unwrap the
generated data encryption key.

1. Set the data encryption key (wrap) and decryption (unwrap) environment variables:

export PGDATAKEYWRAPCMD='openssl enc -e -aes-128-cbc -pass pass:ok -out %p'
export PGDATAKEYUNWRAPCMD='openssl enc -d -aes-128-cbc -pass pass:ok -in %p'

NoteNote

If you are on Windows you don't need the single quotes around the variable value.

2. Initialize the cluster using initdb with encryption enabled. This command sets the data_encryption_key_unwrap_command
parameter in the postgresql.conf file.

/usr/edb/as15/bin/initdb --data-encryption -D /var/lib/edb/as15/data

3. Start the cluster:

/usr/edb/as15/bin/pg_ctl -D /var/lib/edb/as15/data start

4. Run grep on postgresql.conf to see the setting of data_encryption_key_unwrap_command :

grep data_encryption_key_unwrap_command /var/lib/edb/as15/data/postgresql.conf

data_encryption_key_unwrap_command = 'openssl enc -d -aes-128-cbc -pass pass:ok -in %p'

Checking for TDE presence using SQL

You can find out whether TDE is present on a server by querying the data_encryption_version column of the pg_control_init table.

A value of 0 means TDE isn't enabled. Any nonzero value reflects the version of TDE in use. Currently, when TDE is enabled, this value is 1.

4 Limitations

FILE_COPY

selectselect data_encryption_version fromfrom pg_control_init();
 data_encryption_version

 1
(1 rowrow)

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 11

If transparent data encryption is enabled, you can't use the FILE_COPY strategy in the strategy parameter with CREATE DATABASE .

See the PostgreSQL CREATE DATABASE documentation for more information.

5 Commands affected by TDE

When TDE is enabled, the following commands have TDE-specific options or read TDE settings in environment variables or configuration files:

pg_waldump
pg_resetwal
pg_verifybackup
pg_rewind
pg_upgrade
postgres

6 Troubleshooting with encrypted WAL files

You can encrypt WAL files. When troubleshooting with encrypted WAL falls, you can use WAL command options.

Dumping a TDE-encrypted WAL file

To work with an encrypted WAL file, the pg_waldump needs to be aware of the unwrap key. You can either pass the key for the unwrap command
using the following options to the pg_waldump command or depend on the fallback environment variable:

--data-encryption

Consider the WAL files to encrypt, and decrypt them before processing them. You must specify this option if the WAL files were encrypted by
transparent data encryption. pg_waldump can't automatically detect whether WAL files are encrypted. Optionally, specify an AES key length. Valid
values are 128 and 256. The default is 128.

--key-file-name=<file>

Load the data encryption key from the given location.

--key-unwrap-command=<command>

Specifies a command to unwrap (decrypt) the data encryption key. The command must include a placeholder %p that specifies the file to read the
wrapped key from. The command needs to write the unwrapped key to its standard output. If you don't specify this option, the environment variable
PGDATAKEYUNWRAPCMD is used.

Use the special value - if you don't want to apply any key unwrapping command.

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 12

https://www.postgresql.org/docs/15/sql-createdatabase.html
https://www.postgresql.org/docs/15/pgwaldump.html

You must specify this option or the environment variable fallback if you're using data encryption. See Securing the data encryption key for more
information.

Resetting a corrupt TDE-encrypted WAL file

To reset a corrupt encrypted WAL file, the pg_resetwal command needs to be aware of the unwrap key. You can either pass the key for the unwrap
command using the following option to the pg_resetwal command or depend on the fallback environment variable:

--key-unwrap-command=<command>

Specifies a command to unwrap (decrypt) the data encryption key. The command must include a placeholder %p that specifies the file to read the
wrapped key from. The command needs to write the unwrapped key to its standard output. If you don't specify this option, the environment variable
PGDATAKEYUNWRAPCMD is used.

Use the special value - if you don't want to apply any key unwrapping command.

You must specify this option or the environment variable fallback if you're using data encryption. See Securing the data encryption key for more
information.

7 Working with encrypted backup files

Verify a backup of a TDE system

To verify an encrypted backup file, the pg_verifybackup command needs to be aware of the unwrap key. You can either pass the key for the unwrap
command using the following option to the pg_verifybackup command or depend on the fallback environment variable.

--key-unwrap-command=<command>

Specifies a command to unwrap (decrypt) the data encryption key. The command must include a placeholder %p that specifies the file to read the
wrapped key from. The command needs to write the unwrapped key to its standard output. If you don't specify this option, the environment variable
PGDATAKEYUNWRAPCMD is used.

Use the special value - if you don't want to apply any key unwrapping command.

You must specify this option or the environment variable fallback if you're using data encryption. See Securing the data encryption key for more
information.

Resynchronize timelines in a TDE system

To resynchronize an encrypted cluster with its backup, the pg_rewind command needs to be aware of the unwrap key. You can either pass the key for
the unwrap command using the following option to the pg_rewind command or depend on the fallback environment variable:

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 13

https://www.postgresql.org/docs/15/app-pgresetwal.html
https://www.postgresql.org/docs/15/app-pgverifybackup.html
https://www.postgresql.org/docs/15/app-pgrewind.html

--key-unwrap-command=<command>

Specifies a command to unwrap (decrypt) the data encryption key. The command must include a placeholder %p that specifies the file to read the
wrapped key from. The command needs to write the unwrapped key to its standard output. If you don't specify this option, the environment variable
PGDATAKEYUNWRAPCMD is used.

Use the special value - if you don't want to apply any key unwrapping command.

You must specify this option or the environment variable fallback if you're using data encryption. See Securing the data encryption key for more
information.

8 Upgrading a TDE system

These options to pg_upgrade help with upgrading encrypted clusters.

--copy-by-block

Copy files to the new cluster block by block instead of the default, which is to copy the whole file at once. This option is the same as the default mode
but somewhat slower. It does, however, support upgrades between clusters with different encryption settings.

You must use this option when upgrading between clusters with different encryption settings, that is, unencrypted to encrypted, encrypted to
unencrypted, or both encrypted with different keys. While copying files to the new cluster, it decrypts them and reencrypts them with the keys and
settings of the new cluster.

For added certainty, if the old cluster is encrypted and the new cluster was initialized as unencrypted, this option decrypts the data from the old
cluster and copies it to the new cluster unencrypted. If the old cluster is unencrypted and the new cluster was initialized as encrypted, this option
encrypts the data from the old cluster and places it into the new cluster encrypted.

See the description of the initdb --copy-key-from=<file> option for information on copying a key from an existing cluster when preparing a new cluster
as a target for pg_upgrade .

--key-unwrap-command=<command>

Specifies a command to unwrap (decrypt) the data encryption key. The command must include a placeholder %p that specifies the file to read the
wrapped key from. The command needs to write the unwrapped key to its standard output. If you don't specify this option, the environment variable
PGDATAKEYUNWRAPCMD is used.

Use the special value - if you don't want to apply any key unwrapping command.

You must specify this option or the environment variable fallback if you're using data encryption. See Securing the data encryption key for more
information.

9 Single-user mode

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 14

https://www.postgresql.org/docs/15/pgupgrade.html

If you invoke postgres in single-user mode with TDE enabled, the postgres command reads either:

The PGDATAKEYUNWRAPCMD environment variable, if set
The data_encryption_key_unwrap_command value in the postgresql.conf file

10 Testing a TDE configuration

To run the tests in single-user mode with transparent data encryption enabled, set the environment variable PG_TEST_USE_DATA_ENCRYPTION .
For example:

make check PG_TEST_USE_DATA_ENCRYPTION=1

See also

Enabling TDE
PostgreSQL postgres command documentation
PostgreSQL Running the Tests documentation

Transparent Data Encryption

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 15

https://www.postgresql.org/docs/15/app-postgres.html
https://www.postgresql.org/docs/15/app-postgres.html
https://www.postgresql.org/docs/15/regress-run.html

	1 Transparent Data Encryption
	What's encrypted with TDE?
	How does TDE affect performance?

	How does TDE work?
	How does TDE encrypt data?
	How is data stored on disk with TDE?

	2 Securing the data encryption key
	Using a passphrase
	Using a key store
	AWS Key Management Service example
	Azure Key Vault example
	Google Cloud KMS example
	HashiCorp Vault Transit Secrets Engine example

	Key rotation

	3 Enabling TDE
	Using initdb TDE options
	Using environment variables
	Setting the key parameter in postgresql.conf
	Example
	Checking for TDE presence using SQL

	4 Limitations
	FILE_COPY

	5 Commands affected by TDE
	6 Troubleshooting with encrypted WAL files
	Dumping a TDE-encrypted WAL file
	--data-encryption
	--key-file-name=<file>
	--key-unwrap-command=<command>

	Resetting a corrupt TDE-encrypted WAL file
	--key-unwrap-command=<command>

	7 Working with encrypted backup files
	Verify a backup of a TDE system
	--key-unwrap-command=<command>

	Resynchronize timelines in a TDE system
	--key-unwrap-command=<command>

	8 Upgrading a TDE system
	--copy-by-block
	--key-unwrap-command=<command>

	9 Single-user mode
	10 Testing a TDE configuration
	See also

