
Trusted Postgres Architect
Version 23

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. Built at 2024-04-25T23:28:33

5
8
9
9

10
10
11
12
12
13
13
14
14
15
15
16
16
17
17
17
18
18
19
25
28
29
31
35
44
48
49
50
52
53
55
61
63
66
70
73
75
78
81
82
82
84
88
90

1 Trusted Postgres Architect
2 Trusted Postgres Architect release notes
2.1 Trusted Postgres Architect 23.31 release notes
2.2 Trusted Postgres Architect 23.30 release notes
2.3 Trusted Postgres Architect 23.29 release notes
2.4 Trusted Postgres Architect 23.28 release notes
2.5 Trusted Postgres Architect 23.27 release notes
2.6 Trusted Postgres Architect 23.26 release notes
2.7 Trusted Postgres Architect 23.25 release notes
2.8 Trusted Postgres Architect 23.24 release notes
2.9 Trusted Postgres Architect 23.23 release notes
2.10 Trusted Postgres Architect 23.22 release notes
2.11 Trusted Postgres Architect 23.21 release notes
2.12 Trusted Postgres Architect 23.20 release notes
2.13 Trusted Postgres Architect 23.19 release notes
2.14 Trusted Postgres Architect 23.18 release notes
2.15 Trusted Postgres Architect 23.17 release notes
2.16 Trusted Postgres Architect 23.16 release notes
2.17 Trusted Postgres Architect 23.15 release notes
2.18 Trusted Postgres Architect 23.14 release notes
2.19 Trusted Postgres Architect 23.13 release notes
2.20 Trusted Postgres Architect 23.12 release notes
2.21 Trusted Postgres Architect 23.1 to 23.11 release notes
3 TPA installation
4 Open source TPA
5 Installing TPA from source
6 A first cluster deployment
7 Cluster configuration
8 tpaexec provision
9 tpaexec deploy
10 tpaexec test
11 PGD-Always-ON
12 BDR-Always-ON
13 M1
14 aws
15 bare(-metal servers)
16 Docker
17 Cluster configuration
18 Instance configuration
19 Building from source
20 TPA hooks
21 Upgrading your cluster
22 tpaexec switchover
23 BDR/HAProxy server pool management
24 tpaexec rehydrate
25 TPA and Ansible Tower/Ansible Automation Platform
26 TPA, Ansible, and sudo
27 TPA - PuTTY configuration guide

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 2

91
93
94
96
97
98

101
104
106
107
109
112
114
115
117
121
122
124
124
125
125
126
129
130
131
131
132
133
138
138
139
139
141
142
142
143
144
144
145
145
148
149
149
150
151
152
154
155

28 Troubleshooting
29 Running TPA in a Docker container
29.1 Managing clusters in a disconnected or air-gapped environment
29.2 Distribution support
29.3 TPA capabilities and supported software
29.4 Reconciling changes made outside of TPA
29.5 EDB Postgres Distributed configuration
29.6 Barman
29.7 Configuring EFM
29.8 Configuring haproxy
29.9 Configuring HARP
29.10 Configuring Postgres Enterprise Manager (PEM)
29.11 Configuring pgbouncer
29.12 Configuring pgd-proxy
29.13 pglogical configuration
29.14 Configuring repmgr
29.15 How TPA uses 2ndQuadrant and EDB repositories
29.16 Configuring EDB Repos 2.0 repositories
29.17 Configuring 2ndQuadrant repositories
29.18 Configuring APT repositories
29.19 Configuring YUM repositories
29.20 Creating and using a local repository
29.21 Installing from source
29.22 Git credentials
29.23 Environment
29.24 Python environment
29.25 Configuring /etc/hosts
29.26 Filesystem configuration
29.27 Uploading artifacts
29.28 ssh_key_file
29.29 Managing SSH host keys
29.30 Postgres source installation
29.31 Installing packages
29.32 Running initdb
29.33 Installing Postgres-related packages
29.34 SSL Certificates
29.35 Setting sysctl values
29.36 Creating Postgres databases
29.37 Creating Postgres tablespaces
29.38 postgresql.conf
29.39 pg_hba.conf
29.40 pg_ident.conf
29.41 Configuring .pgpass
29.42 The postgres Unix user
29.43 Creating Postgres users
29.44 tpaexec archive-logs
29.45 tpaexec download-packages
29.46 TPA custom commands

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 3

156
158
158
161
162
162
163
164

29.47 TPA custom tests
29.48 Locale
29.49 Patroni cluster management commands
29.50 Adding Postgres extensions
29.51 tpaexec deprovision
29.52 tpaexec info
29.53 tpaexec reconfigure
30 Selective task execution

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 4

1 Trusted Postgres Architect

© Copyright EnterpriseDB UK Limited 2015-2024 - All rights reserved.

Introduction

TPA is an orchestration tool that uses Ansible to deploy Postgres clusters according to EDB's recommendations.

TPA embodies the best practices followed by EDB, informed by many years of hard-earned experience with deploying and supporting Postgres. These
recommendations apply to quick testbed setups as well as production environments.

What can TPA do?

TPA is built around a declarative configuration mechanism that you can use to describe a Postgres cluster, from its topology to the smallest details of its
configuration.

Start by running tpaexec configure to generate an initial cluster configuration based on a few high-level choices, such as the Postgres version to
install. The default configuration is ready to use as is, but you can edit it to suit your needs. (The generated configuration is a text file, config.yml).

Using this configuration, TPA can:

1. Provision servers, for example, AWS EC2 instances or Docker containers, and any other resources needed to host the cluster. Or you can deploy to
existing servers or VMs just by specifying connection details.

2. Configure the operating system, for example, tweak kernel settings, create users and SSH keys, install packages, define systemd services, set up
log rotation, and so on.

3. Install and configure Postgres and associated components, such as PGD, Barman, pgbouncer, repmgr, and various Postgres extensions.

4. Run automated tests on the cluster after deployment.

5. Deploy future changes to your configuration, such as changing Postgres settings, installing and upgrading packages, adding new servers, and so
on.

How do you use it?

To use TPA, you need to install it and run the tpaexec setup command. Follow the installation instructions for your platform.

TPA operates in four stages to bring up a Postgres cluster:

Generate a cluster configuration.
Provision servers (VMs, containers) to host the cluster.
Deploy software to the provisioned instances.
Test the deployed cluster.

1. Configuration: decide what kind of cluster you
want

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 5

You can run TPA from your laptop, an EC2 instance, or any machine that can reach the cluster's servers over the network.

For more information, see TPA capabilities and supported software.

Configuration

The tpaexec configure command generates a simple YAML configuration file to describe a cluster, based on the options you select. The
configuration is ready for immediate use, but you can modify it to better suit your needs. Editing the configuration file is the usual way to make any
configuration changes to your cluster, both before and after it's created.

At this stage, you must select an architecture and a platform for the cluster. An architecture is a recommended layout of servers and software to set up
Postgres for a specific purpose. Examples include M1 (Postgres with a primary and streaming replicas) and PGD-Always-ON (EDB Postgres Distributed 5
in an Always On configuration). A platform is a means to host the servers to deploy any architecture, for example, AWS, Docker, or bare-metal servers.

Provisioning

The tpaexec provision command creates instances and other resources required by the cluster. The details of the process depend on the
architecture (for example, M1) and platform (for example, AWS) that you selected while configuring the cluster.

For example, given AWS access with the necessary privileges, TPA provisions EC2 instances, VPCs, subnets, routing tables, internet gateways, security
groups, EBS volumes, elastic IPs, and so on.

You can also provision existing servers by selecting the bare platform and providing connection details. Whether these are bare metal servers or those
provisioned separately on a cloud platform, they can be used as if they were created by TPA.

You aren't restricted to a single platform. You can spread your cluster out across some AWS instances (in multiple regions) and some on-premises
servers or servers in other data centers as needed.

At the end of the provisioning stage, you have the required number of instances with the basic operating system installed, which TPA can access by way
of SSH (with sudo to root).

Deployment

The tpaexec deploy command installs and configures Postgres and other software on the provisioned servers. (These servers can be created by

[tpa]$ tpaexec configure clustername --architecture M1 --platform aws
\
 --postgresql 14 \
 --failover-manager
repmgr

2. Provisioning: create the servers needed to host the
cluster
[tpa]$ tpaexec provision
clustername

3. Deployment: install and configure the necessary
software
[tpa]$ tpaexec deploy
clustername

4. Testing: make sure everything is working as
expected
[tpa]$ tpaexec test
clustername

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 6

TPA, but they don't have to be. It doesn't matter which application created them as long as SSH and sudo access is available.) This includes setting up
replication, backups, and so on.

At the end of the deployment stage, Postgres is up and running.

Testing

The tpaexec test command executes various architecture and platform-specific tests against the deployed cluster to ensure that it's working as
expected.

At the end of the testing stage, you have a fully functioning cluster.

Incremental changes

TPA is carefully designed so that provisioning, deployment, and testing are idempotent. You can run through them, make a change to config.yml ,
and run through the process again to deploy the change. If nothing changed in the configuration or on the instances, then rerunning the entire process
doesn't change anything either.

Cluster management

Once your cluster is up and running, TPA provides convenient cluster management functions, including configuration changes, switchover, and zero-
downtime minor-version upgrades. These features make it easier and safer to manage your cluster than making the changes by hand.

Extensible through Ansible

TPA supports a variety of configuration options, so you can do a lot just by editing config.yml and rerunning provision/deploy/test. If you do need to
go beyond what TPA already supports, you can write:

Custom commands, which make it simple to write playbooks to run on the cluster. Create commands/xyz.yml in your cluster directory, and
invoke it using tpaexec xyz /path/to/cluster . Custom commands are ideal for any management tasks or processes that you need to
automate.

Custom tests, which augment the builtin tests with in-depth verifications specific to your environment and application. Using tpaexec test
to run all tests in a uniform, repeatable way ensures that you don't miss out on anything important, either when dealing with a crisis or during
routine cluster management.

Hook scripts, which are invoked during various stages of the deployment. For example, tasks in hooks/pre-deploy.yml are run before the
main deployment. There are many other hooks, including post-deploy . Using hook scripts gives you easy access to the full range of Ansible
functionality.

It's just Postgres

TPA can create complex clusters with many features configured, but the result is just Postgres. The installation follows some conventions designed to
make life simpler, but there's no hidden magic or anything standing in the way between you and the database. You can do everything on a TPA cluster
that you can do on any other Postgres installation.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 7

Versioning in TPA

TPA previously used a date-based versioning scheme whereby the major version was derived from the year. From version 23, we moved to a derivative of
semantic versioning. For historical reasons, we aren't using the full three-part semantic version number. Instead TPA uses a two-part major.minor
format. The minor version is incremented on every release. The major version is incremented only when required to comply with the backward
compatibility principle that follows.

Backward compatibility

A key development principle of TPA is to maintain backward compatibility so there's no reason for users to need anything other than the latest version of
TPA. We define backward compatibility as follows:

A config.yml created with TPA X.a is valid with TPA X.b, where b>=a.

The cluster created from that config.yml can be maintained and redeployed with TPA X.b.

Therefore, a new major version implies a break in backward compatibility. As such, we aim to avoid releasing major versions and do so only in
exceptional circumstances.

Getting started

Follow the TPA installation instructions for your system. Then configure your first cluster.

2 Trusted Postgres Architect release notes

The Trusted Postgres Architect documentation describes the latest version of Trusted Postgres Architect 23.

Version Release date

23.31 19 Mar 2024

23.30 19 Mar 2024

23.29 15 Feb 2024

23.28 23 Jan 2024

23.27 19 Dec 2023

23.26 30 Nov 2023

23.25 14 Nov 2023

23.24 17 Oct 2023

23.23 21 Sep 2023

23.22 06 Sep 2023

23.21 05 Sep 2023

23.20 01 Aug 2023

23.19 12 Jul 2023

23.18 23 May 2023

23.17 10 May 2023

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 8

23.16 21 Mar 2023

23.15 15 Mar 2023

23.14 23 Feb 2023

23.13 22 Feb 2023

23.12 21 Feb 2023

23.1-11 -

Version Release date

2.1 Trusted Postgres Architect 23.31 release notes

Released: 19 Mar 2024

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.31 include the following:

Type Description

Bug Fix Fixed a critical bug whereby deployments could fail due to a syntax error.

2.2 Trusted Postgres Architect 23.30 release notes

Released: 19 Mar 2024

End-of-support for 2ndQuadrant Ansible

Please note that, per the previously issued deprecation notice, this release completely removes support for 2ndQuadrant Ansible, which is no
longer maintained. In addition, after Ansible 8 became the default in version 23.29, this version requires Ansible 8 or newer. To ensure you
have a compatible Ansible version, please run tpaexec setup after updating TPA as detailed in the documentation.

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.30 include the following:

Type Description

New Feature
TPA now provides a custom 'Execution Environment' image to be used in Ansible Automation Platform 2.4+ (Controller version 4+).
this image contains everything needed to run deployments via AAP. This image is built using ansible-builder and a python-alpine
lightweight base image.

Enhancement
TPA now automatically adds package names and shared preload library entries for a subset of extensions. For these specific
extensions, only the extension name is needed in the extra_postgres_extensions list or the the extensions list of a
database entry in postgres_databases .

Enhancement
The EDB Advanced Storage Pack package and shared preload library entry will automatically be added for bluefin when a user
specifies it as an extension and the postgres_version is 15 or greater.

Enhancement
Added a new 'provision_only' option for instances. If an instance has provision_only: true in config.yml, it will be
provisioned as normal but not added to the inventory which is seen by tpaexec deploy .

Change
Previous versions of TPA used to synchronize the source node's database structure to witness nodes. This was not necessary and
the synchronized schema was never be used or updated. To prevent this happening, TPA now explicitly sets "synchronize_structure"
to "none" when calling bdr.join_node_group() for witness nodes.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 9

Change

Selective execution of tasks is now supported using custom selectors rather than Ansible tags. To run only tasks matching a certain
selector: tpaexec deploy . --included_tasks=barman . To skip tasks matching a certain selector: tpaexec
deploy . --excluded_tasks=ssh Task selectors can also be used by specifying the excluded_tasks or
included_tasks variables in config.yml .

Change
Ansible 2.9 is no longer supported, neither the community distribution nor the 2ndQuadrant fork. Users who have been using the -
-skip-tags option to tpaexec deploy should move to the new --excluded_tasks option.

Type Description

2.3 Trusted Postgres Architect 23.29 release notes

Released: 15 Feb 2024

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.29 include the following:

Type Description

Enhancement
Added support for storing the cluster vault password in the system keyring. This leverages python keyring module to store vault
password in the supported system keyring when keyring_backend is set to system (default for new clusters). This change
does not impact existing clusters or any clusters that set keyring_backend to legacy in config.yml.

Enhancement
The --ansible-version argument to tpaexec setup now accepts 8 or 9 as valid ansible versions, as well as the
existing 2q or community , both of which imply ansible 2.9. The default is now 8 . Support for ansible 9 is experimental and
requires python 3.10 or above.

Bug Fix Fixed an issue whereby edb_repositories already defined in config.yml are not kept during reconfigure. Fixes bdr4 to pgd5 upgrade
scenario in air gapped environment.

Bug Fix TPA's postgres-monitor will now recognize the message "the database system is not yet accepting connections" as a
recoverable error.

Bug Fix TPA now correctly skips the postgres/config/final role on replicas when upgrading.

Bug Fix Fixed an issue whereby wildcards in package names were not respected when using package downloader on Debian and Ubuntu
systems.

Bug Fix The downloader now runs apt-get update before fetching packages on Debian and Ubuntu systems.

Bug Fix TPA now disables transaction streaming when CAMO is enabled in PGD clusters.

Bug Fix TPA now correctly configures Barman servers where selinux is enabled.

2.4 Trusted Postgres Architect 23.28 release notes

Released: 23 Jan 2024

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.28 include the following:

Type Description

Enhancement Added a new option postgres_log_file . This option sets the Postgres log file, whether logging through stderr or syslog. The
default is '/var/log/postgres/postgres.log', the previously hard-coded value.

Enhancement
Added a new hook barman-pre-config . This hook is invoked after Barman is installed and its user is set up but before it is
configured. It can be used for installing certificate files or other tasks which need the barman user to exist but which must be done
before Barman is started.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 10

Enhancement The key elastic_ip on an AWS instance in config.yml can be set to an elastic IP address that has already been allocated
in order to assign it to this instance.

Change In Patroni clusters, TPA now sets up replicas before handing over control of the cluster to Patroni, rather than setting up the
primary only and letting Patroni set up the replicas.

Change

For new clusters, TPA will create the user specified by setting harp_manager_user (by default harpmanager), belonging to
the bdr_superuser role, and set HARP Manager to operate as this user instead of postgres superuser. This does not affect
the existing clusters where TPA will keep using postgres as the HARP Manager user, unless the user overrides this behavior by
explicitly setting harp_manager_user to a different value in config.yml .

Bug Fix Fixed an issue whereby TPA would erroneously attempt to install repmgr on an EFM cluster.

Bug Fix Fixed an issue whereby the TPA would return a non-zero exit code when the warning about 2q repositories was displayed despite
deploy having succeeded.

Bug Fix TPA will now interpret wildcards correctly on Debian-family systems when downloading packages for offline use.

Bug Fix Fixed an issue whereby TPA would attempt to use incorrect package names for repmgr when installing from PGDG repositories.

Bug Fix Fixed barman connection failure when using selinux and a custom barman home directory.

Bug Fix TPA will now use the correct cluster name in show-password and store-password commands when it is different from the
directory name

Bug Fix TPA will now error out cleanly if unavailable 2ndQuadrant repository keys are required.

Bug Fix TPA will now sanitize hostnames correctly when the --cluster-prefixed-hostnames option is used.

Bug Fix TPA will now ensure packages are correctly copied to the remote host when upgrading a cluster using a local repo.

Type Description

2.5 Trusted Postgres Architect 23.27 release notes

Released: 19 Dec 2023

Migration to EDB repositories

This release of TPA lays the groundwork for the decommissioning of the legacy 2ndQuadrant repositories. Existing configurations that use the
legacy repositories will continue to function until they are decommissioned, but a warning will be displayed. To update an existing
configuration to use EDB Repos 2.0, you may use tpaexec reconfigure --replace-2q-repositories .

Python interpreter

TPA now runs using a Python interpreter provided by the edb-python-39 package, which will be automatically installed as a dependency
of the tpaexec package. This allows us to keep TPA updated with security patches on older systems where the Python version is no longer
widely supported. This is a completely standard build of Python 3.9. If you prefer, you may run TPA using another interpreter. We recommend
3.9, versions older than 3.9 or newer than 3.11 are not supported.

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.27 include the following:

Type Description

Enhancement TPA now supports Oracle Linux 7, 8 and 9 on Docker.

Change TPA now requires Python 3.9-3.11 and depends on the package edb-python-39 to provide a suitable interpreter.

Change TPA will no longer configure any 2ndQuadrant repositories by default, instead it will select suitable repositories from EDB Repos
2.0.

Change
TPA now provides a new --replace-2q-repositories argument to tpaexec reconfigure that will remove 2q
repositories from an existing config.yml and add suitable EDB repositories for the cluster's postgres flavour and BDR version.

Change TPA now sets file system permissions explicitly on more objects.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 11

Change A new variable disable_repository_checks can be set to true in config.yml to bypass the usual check for EDB repositories
when deploying the PGD-Always-ON architecture.

Change TPA will now generate a primary_slot_name also on primary node to be used in case of switchover, to ensure the switched primary
will have a physical slot on the new primary.

Change TPA will now ensure that commit_scope for CAMO enabled partners is generated using existing config options from older BDR
versions when running tpaexec reconfigure command to prepare for major PGD upgrade. It also choses better defaults.

Bug fix Fixed an issue whereby postgres variables were rejected by Patroni due to validation rules.

Bug fix Fixed an issue whereby a user could not set a single barman_client_dsn_attributes with sslmode=verify-full .

Bug Fix TPA will now assign a lower default maintenance_work_mem to avoid out-of-memory errors.

Type Description

2.6 Trusted Postgres Architect 23.26 release notes

Released: 30 Nov 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.26 include the following:

Type Description

Enhancement TPA now supports Oracle Linux 9 on the Docker platform.

Enhancement Added --cluster-prefixed-hostnames option to tpaexec configure . This makes it easy to avoid hostname clashes
on machines hosting more than one docker cluster.

Change Added packages to enable Docker builds on Mac OS X.

Change When there are multiple PEM servers in a cluster, the agent running on a PEM server registers to its local server.

Change For PGD 5 clusters with CAMO. TPA will set timeout to 60s and require_write_lead to true by default.

Bug Fix Fixed an issue whereby CAMO config was not correctly set up when upgrading a PGD 3 cluster to PGD 5. Upgrade is now fully
supported for CAMO clusters.

Bug Fix Fixed an issue whereby hostname rather than bdr_node_name was used when fencing or unfencing a HARP node.

Bug Fix Fixed an issue whereby provision would be automatically run when deploy was invoked with options that suppress
deployment.

2.7 Trusted Postgres Architect 23.25 release notes

Released: 14 Nov 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.25 include the following:

Type Description

Enhancement TPA now supports automated upgrades from PGD 3.7 to PGD 5.3 or above. Note, upgrading clusters with CAMO is not yet
supported.

Enhancement TPA now supports EDB Advanced Server 16 and EDB Extended Server 16.

Change Various improvements to the upgrade process introduced with PGD 4 to PGD 5 upgrades have been backported to BDR-Always-ON
upgrades.

Change TPA now supports installing PEM on SLES.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 12

Change
TPA now explicitly sets permissions when creating some filesystem objects. This will be extended to all filesystem objects in a
future release.

Change TPA now adds a symlink to the pgd-cli config file for v1 so it can be run without having to specify the path via -f switch.

Change TPA now calls the alter_node_kind PGD function to ensure node kind is set correctly for BDR-Always-ON clusters using BDR
version 4.3 and above.

Change Default cluster configuration from now selects SLES 15 SP5 when SLES 15 is requested (previously SP4).

Bug Fix Fixed an issue which resulted in a checksum failure during tpaexec setup command for tpaexec-deps users.

Bug Fix Fixed an issue whereby pem_server_group was not correctly applied when pemworker was invoked meaning servers were not
grouped as expected in PEM.

Bug Fix Fixed an issue with the sys/sysstat role whereby sar was not scheduled to run on instances other than the Barman instance.

Type Description

2.8 Trusted Postgres Architect 23.24 release notes

Released: 17 Oct 2023

2ndQuadrant/ansible deprecation

2ndQuadrant/ansible is now deprecated and tpaexec setup now defaults to Community Ansible.

Support for using the 2ndQuadrant Ansible fork will be removed from TPA in April 2024 and the GitHub repository will be archived.

You should switch to Community Ansible, which is now the default. For the vast majority of users, this change will be transparent.

If you are using --skip-tags with 2ndQuadrant Ansible, be aware that this is not supported with TPA and Community Ansible. We plan to
provide an alternative to --skip-tags compatible with Community Ansible before the removal of 2ndQuadrant Ansible.

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.24 include the following:

Type Description

Change
tpaexec setup now defaults to using community ansible rather than 2ndQuadrant ansible. The option --use-2q-ansible can

be used to force the use of 2ndQuadrant ansible, which is now deprecated and will be removed in a future release. If you are using --
skip-tags , see the install documentation.

Change When a repository has been removed from edb_repositories in config.yml, tpaexec deploy now removes it from the nodes.

Change TPA will now detect when harp-proxy and harp-manager are running on the same node and use a different config file for harp-proxy.

Change The upgrade command will now update local repositories on target instances.

Bug Fix Fixed an issue whereby TPA did not respect postgres_wal_dir in pg_basebackup invocation

Bug Fix TPA will now accept repmgr as a failover manager for subscriber-only nodes in PGD clusters, allowing physical replication of such nodes.

Bug Fix Fixed a typo which prevented TPA building Ubuntu 22.04 Docker images.

Bug Fix TPA will now reject unsupported combination of the BDR-Always-ON architecture, the EDB Postgres Extended flavour, and PEM at
configure-time.

2.9 Trusted Postgres Architect 23.23 release notes

Released: 21 Sep 2023

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 13

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.23 include the following:

Type Description

Enhancement TPA now supports PostgreSQL 16. Please note, PostgreSQL 16 packages are not yet available in all supported repos, so not all
configurations will work until this is the case.

Change
When Postgres 16 or above is selected, TPA will not add any 2ndQuadrant repos by default. TPA will explicitly set
tpa_2q_repositories: [] in this case.

Change EFM is now configured to use JDK 11 by default on platforms where it is available.

Change Where no EDB Repositories are use, TPA will not exclude any packages from PGDG (previously Barman and psycopg2 were
excluded).

Change Added package names for etcd and Patroni to support installation on SLES.

Bug Fix Fixed an issue whereby Apache HTTPD service for PEM Server would not start on boot.

Bug Fix Fixed an issue whereby pg_backup_api tests were run with incorrect permissions causing them to fail.

Bug Fix Fixed an issue whereby Apache HTTPD service for pg_backup_api would not start on boot.

Bug Fix Fixed an issue whereby bdr.standby_slot_names and bdr.standby_slots_min_confirmed checks used the
incorrect schema on bdr3 clusters.

Bug Fix Fixed an issue whereby configuration keys for extensions were passed to Patroni in the incorrect format, resulting in 'WARNING:
Removing unexpected parameter'.

Bug Fix Fixed an issue when using the intermediate base image option for docker_images whereby the resulting image name was
incorrect.

2.10 Trusted Postgres Architect 23.22 release notes

Released: 6 Sep 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.22 include the following:

Type Description

Change TPA is now an open source project! You can clone the source under the GPLv3 license from
GitHub.

2.11 Trusted Postgres Architect 23.21 release notes

Released: 5 Sep 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.21 include the following:

Type Description

Change The default M1 configuration now uses EDB Repos 2.0 if any EDB software is selected, otherwise PGDG is used. This only affects new
clusters.

Change You must now choose a failover manager explicitly when running tpaexec configure with the M1 architecture.

Bug fix Fixed an issue with creation of PGD subscriber-only nodes whereby TPA incorrectly required 'subscriber-only' to be set on the replica
instead of the upstream instance.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 14

https://github.com/EnterpriseDB/tpa

Bug fix TPA will now skip inapplicable tasks when deploying to containers even if you are using the 'bare' platform option (previously these were
skipped only if 'docker' was selected).

Bug fix Fixed an issue with permissions on /etc/edb whereby if you added the pgd-proxy role to a data node in a deployed PGD5 cluster, pgd-
proxy would fail to start because it did not have permissions to open pgd-proxy-config.yml.

Bug fix Fixed an issue whereby /var/log/postgres could end up with inappropriate permissions (0600) if a strict umask was set

Bug fix Fixed an issue whereby repeating tpaexec deploy on a Barman instance correctly registered with PEM would lose the PEM Agent
Barman configuration.

Type Description

2.12 Trusted Postgres Architect 23.20 release notes

Released: 01 Aug 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.20 include the following:

Type Description

New feature
TPA now supports upgrades from PGD 4 to PGD 5 by running the new command tpaexec reconfigure to generate a revised
config.yml and then tpaexec upgrade to perform the upgrade.

Enhancement Added a new subcommand tpaexec info validate that runs a checksum over the TPA installation and confirms that it
matches the one distributed with the package.

Change The update-postgres command has been replaced with the more general upgrade command.

Change TPA now explicitly adds tzdata-java when installing OpenJDK for Failover Manager on RHEL 8 or 9. This is a workaround for
this OpenJDK bug.

Change TPA now uses the latest available Debian AMIs on AWS (latest at the time of this release).

Change TPA now runs tpaexec provision automatically as part of tpaexec deploy or tpaexec upgrade if config.yml has
changed.

Bug fix Fixed a bug whereby TPA could attempt to use a non-existent user when running pgd-cli on pgd-proxy nodes.

Bug fix Fixed a bug whereby changes made by tpaexec relink were not committed to the Git repository correctly.

2.13 Trusted Postgres Architect 23.19 release notes

Released: 12 Jul 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.19 include the following:

Type Description

New feature TPA now allows the creation of physical replicas of subscriber-only PGD nodes.

New feature TPA now supports the configuration of HTTP(S) HARP and PGD Proxy health probes.

New feature TPA now allows you to select Patroni as a failover manager with the M1 architecture. This support is experimental and not yet
recommended for use in production.

Enhancement TPA now allows you to set specific versions for edb-pgd-proxy and edb-bdr-utilities rather than always using the latest version.

Change On Debian-like systems, the package selection code now uses -dbg rather than -dbgsym for certain packages where applicable.

Change When configuring replication slots, TPA will now ensure that only valid characters are used in the primary_slot_name. Previously
TPA would use the inventory_hostname as a default, which could contain hyphens; these are now replaced with underscores.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 15

https://access.redhat.com/solutions/7025428

Change The default Failover Manager version is now 4.7.

Bug fix Fixed an issue whereby PGD 3.7 to 4 upgrades would fail in TPA 23.18.

Bug fix Fixed an issue whereby TPA would include underscores in TLS certificate Common Names when deploying PEM. This is invalid and
would result in failure on some platforms.

Bug fix Fixed an issue whereby an incorrect etcd service name would be used on Debian-like platforms, preventing TPA from starting etcd.

Bug fix Fixed an issue whereby TPA could not install etcd packages on RHEL 8.

Bug fix Fixed an issue whereby the message Failed to commit files to git: b'' would be displayed during configure.

Bug fix
Fixed an issue whereby TPA would erroneously generate and overwrite Postgres user passwords when generate_password:
false .

Bug fix Fixed an issue whereby volume map creation on AWS failed to take account of region resulting in failures when using regions other
than eu-west-1.

Type Description

2.14 Trusted Postgres Architect 23.18 release notes

Released: 23 May 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.18 include the following:

Type Description

Enhancement TPA now uses pg_basebackup instead of repmgr for initial replica creation.

Enhancement TPA now supports SLES 15, excluding creation of local repositories for air-gapped deployments.

Enhancement TPA now supports minor-version upgrades of PGD5.

Enhancement TPA now runs improved tests when tpaexec test is executed.

Bug fix Fixed an issue whereby TPA attempted to use legacy 2ndQuadrant repositories on unsupported distributions.

Bug fix Fixed an issue whereby TPA didn't install pg_receivewal on Barman instances where it was required.

Bug fix Fixed an issue whereby TPA intermittently failed to create symlinks to block devices on AWS hosts during provisioning, causing
deploy to fail.

2.15 Trusted Postgres Architect 23.17 release notes

Released: 10 May 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.17 include the following:

Type Description

Enhancement
Added a new --pgd-proxy-routing parameter to the configure command. This can be set to global or local . Local
routing will make every PGD-Proxy route to a write leader within its own location. Global routing will make every proxy route to a
single write leader, elected amongst all available data nodes across all locations.

Change Removed the --active-locations parameter from the configure command.

Enhancement TPA now supports Ubuntu 22.04

Change Updated the AWS AMIs used for RHEL 7 and 8.

Bug fix Fixed an issue whereby TPA would incorrectly remove groups from existing Postgres users.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 16

Bug fix Fixed an issue whereby TPA would print an unhelpful error message when a git commit failed.

Bug fix Fixed an issue whereby group names were incorrectly sanitized and uppercase letters were converted to underscores rather than
lowercase ones.

Bug fix Fixed an issue whereby Postgres was not restarted when required after CAMO configuration.

Bug fix Fixed an issue with etcd changes, ensuring that they are now idempotent and avoiding unnecessary restarts of etcd on subsequent
deployments.

Type Description

2.16 Trusted Postgres Architect 23.16 release notes

Released: 21 Mar 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.16 include the following:

Type Description

Change The default PGD-Always-ON cluster is now one location with an associated subgroup containing two data nodes and one witness
node.

Change TPA now deploys pgd-proxy on all data nodes by default.

Enhancement Added a new option, --add-proxy-nodes-per-location N , which creates separate proxy instances

Enhancement TPA now adds a witness node automatically if --data_nodes_per_location is even and prints a warning if you specify a
cluster with only two locations

Change
The parameter --add-witness-only-location has been renamed to --witness-only-location because we're NOT
adding a location, but designating an already-named (in --location-names) location as witness-only.

Change You must now specify Postgres flavour and version explicitly at tpaexec configure time

Enhancement Added new CLI abbreviations for Postgres flavour and version, for example --postgresql 14 or --edbpge 15

Enhancement Improved handling and documentation of the various supported EDB software repositories

Change TPA no longer includes the PGDG repository by default for PGD-Always-ON clusters

Bug fix Fixed an issue whereby EDB Failover Manager was not selected as the failover manager for EPAS by default

Bug fix Fixed an issue whereby pglogical was unnecessarily installed in the M1 architecture

2.17 Trusted Postgres Architect 23.15 release notes

Released: 15 Mar 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.15 include the following:

Type Description

Minor change Changes to dependency mappings.

2.18 Trusted Postgres Architect 23.14 release notes

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 17

Released: 23 Feb 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.14 include the following:

Type Description

Bug fix Fixes an error whereby package lists weren't correctly populated for PGD 3 and 4 configurations. (TPA-365)

Change Use multi-line BDR DCS configuration in HARP's config.yaml (TPA-360, RT90034)

2.19 Trusted Postgres Architect 23.13 release notes

Released: 22 Feb 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.13 include the following:

Type Description

Bug fix Don't enable old EDB repo with PGD-Always-ON and --epas .

Bug fix Fix error with PGD-Always-ON and --postgres-version 15 .

2.20 Trusted Postgres Architect 23.12 release notes

Released: 21 Feb 2023

New features, enhancements, bug fixes, and other changes in Trusted Postgres Architect 23.12 include the following:

Type Description

Feature Introduce full support for EDB Postgres Distributed 5, including Commit At Most Once (CAMO) configuration support based on
commit scopes.

Feature Introduce support for EDB Postgres Extended repository and packages.

Enhancement

Preliminary support for configuring multi-region AWS clusters.

Multi-region clusters require manual setup of VPCs and VPC.

Enhancement Enable proxy routing (and, therefore, subgroup RAFT) automatically for --active-locations . Removes the configure option
to enable subgroup RAFT globally.

Bug fix Ensure the EDB_SUBSCRIPTION_TOKEN is not logged.

Bug fix Allow the user to suppress addition of the products/default/release repo to tpa_2q_repositories.

Bug fix

Ensure that nodes subscribe to bdr_child_group, if available.

In clusters with multiple subgroups, TPA did not expect instances to be subscribed to the replication sets for both the top group and
the subgroup, so it would incorrectly remove the latter from the node's subscribed replication sets.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 18

Bug fix

Fail reliably with a useful error if Postgres doesn't start.

Due to an Ansible bug, the deployment wouldn't fail if Postgres did not start on some instances, but did start on others (for
example, due to a difference in the configuration). Continuing on with the deployment resulted in errors when trying to access
cluster_facts for the failed hosts later.

Bug fix

Don't call bdr.alter_node_replication_sets() on witnesses for BDR 4.3 and later.

This adjusts to a new restriction in BDR versions where witness nodes are not handled with a custom replication set configuration.

Bug fix Replace hardcoded "barman" references to enable use of the barman_{user,group} settings to customize the barman user and
home directory.

Bug fix Add shared_preload_libraries entries, where appropriate, for extensions mentioned under postgres_databases[*].extensions.

Bug fix Ensure that pgaudit does not appear before bdr in shared_preload_libraries (to avoid a known crash).

Bug fix Fix syntax error (DSN quoting) in pgd-cli config file.

Bug fix

Sort endpoints in pgd-proxy config to avoid file rewrites.

This will likely require a pgd-proxy restart on the next deploy (but it will avoid unnecessary future rewrites/restarts on subsequent
deploys).

Bug fix Fix an error while installing rsync from a local-repo on RH systems.

Bug fix Fix an error with Apache WSGI module configuration for PEM 9 on Debian systems.

Bug fix Don't remove the bdr extension if it has been created on purpose, even if it is unused.

Type Description

2.21 Trusted Postgres Architect 23.1 to 23.11 release notes

TPA 23.11

Released: 2023-01-31

Notable changes

TPA-180 Introduce experimental support for PGD-Always-ON architecture (to be released later this year). PGD-Always-ON architecture will use
the upcoming BDR version 5. Initial support has been added for internal purposes and will be improved in upcoming releases.

Minor changes

TPA-349 Bump dependency versions Bump cryptography version from 38.0.4 to 39.0.0 Bump jq version from 1.3.0 to 1.4.0
TPA-345 Change TPAexec references to TPA in documentation. Update the documentation to use 'TPA' instead of 'TPAexec' when referring to the
product.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 19

TPA 23.10

Released: 2023-01-04

Minor changes

TPA-161 Introduce harp_manager_restart_on_failure setting (defaults to false) to enable process restart on failure for the harp-
manager systemd service

Bug Fixes

TPA-281 Delete FMS security groups when deprovisioning an AWS cluster Fixes a failure to deprovision a cluster's VPC because of unremoved
dependencies.
TPA-305 Add enterprisedb_password to pre-generated secrets for Tower
TPA-306 Prefer PEM_PYTHON_EXECUTABLE, if present, to /usr/bin/python3 Fixes a Python module import error during deployment with PEM
9.0.
TPA-219 Make pem-agent monitor the bdr_database by default on BDR instances

TPA 23.9

Released: 2022-12-12

Bugfixes

TPA-301 Fix auto-detection of cluster_dir for Tower clusters When setting cluster_dir based on the Tower project directory, we now correctly
check for the existence of the directory on the controller, and not on the instances being deployed to.
TPA-283 Add dependency on psutil, required for Ansible Tower.
TPA-278 Remove "umask 0" directive from rsyslog configuration, which previously resulted in the creation of world-readable files such as
rsyslogd.pid .
TPA-291 Respect the postgres_package_version setting when installing the Postgres server package to obtain pg_receivewal on Barman
instances.

TPA 23.8

Released: 2022-11-30

Notable changes

TPA-18 Support Ansible Tower 3.8 This release supports execution of deploy.yml (only) on a bare cluster (i.e., with existing servers)
through Ansible Tower 3.8. Install TPAexec on the Tower server and run tpaexec setup to create a virtual environment which can be used in
Tower Templates to run TPAexec playbooks. Use the --use-ansible-tower and --tower-git-repository configure options to
generate a Tower-compatible cluster configuration. For details, see Ansible Tower.

Minor changes

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 20

https://techsupport.enterprisedb.com/customer_portal/sw/tpa/trunk/238/#

TPA-238 Initialise the cluster directory as a git repository If git is available on the system where you run TPAexec, tpaexec configure will
now initialise a git repository within the cluster directory by default. If git is not available, it will continue as before. To avoid creating the
repository (for example, if you want to store the cluster directory within an existing repository), use the --no-git option.

TPA 23.7

Released: 2022-11-09

Notable changes

TPA-234 Support the community release of Ansible 2.9 TPAexec used to require the 2ndQuadrant/ansible fork of Ansible 2.9. In this release, you
may instead choose to use the community release of Ansible with the tpaexec setup --use-community-ansible . For now, the default
continues to be to use 2ndQuadrant/ansible. This will change in a future release; support for 2ndQuadrant/ansible will be dropped, and Ansible
will become the new default.

Minor changes

TPA-209 Accept --postgres-version 15 as a valid tpaexec configure option, subsequent to the release of Postgres 15
TPA-226 Accept IP addresses in the --hostnames-from file Formerly, the file passed to tpaexec configure was expected to contain
one hostname per line. Now it may also contain an optional IP address after each hostname. If present, this address will be set as the
ip_address for the corresponding instance in config.yml. (If you specify your own --hostnames-from file, the hostnames will no longer

be randomised by default.)
TPA-231 Add a new bdr-pre-group-join hook This hook is executed before each node joins the BDR node group. It may be used to change the
default replication set configuration that TPAexec provides.
TPA-130 Use the postgresql_user module from community.postgresql The updated module from the community.postgresql collection is needed in
order to correctly report the task status when using a SCRAM password (the default module always reports changed).
TPA-250 Upgrade to the latest versions of various Python dependencies

Bugfixes

TPA-220 Ensure LD_LIBRARY_PATH in .bashrc does not start with ":"
TPA-82 Avoid removing BDR-internal ${group_name}_ext replication sets
TPA-247 Fix "'str object' has no attribute 'node_dsn'" errors on AWS The code no longer assigns hostvars[hostname] to an intermediate
variable and expects it to behave like a normal dict later (which works only sometimes). This fixes a regression in 23.6 reported for AWS clusters
with PEM enabled, but also fixes other similar errors throughout the codebase.
TPA-232 Eliminate a race condition in creating a symlink to generated secrets in the inventory that resulted in "Error while linking: [Errno 17] File
exists" errors
TPA-252 Restore code to make all BDR nodes publish to the witness-only replication set This code block was inadvertently removed in the v23.6
release as part of the refactoring work done for TPA-193.

TPA 23.6

Released: 2022-09-28

Notable changes

TPA-21 Use boto3 (instead of the unmaintained boto2) AWS client library for AWS deployments. This enables SSO login and other useful features.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 21

TPA-202 Add harp-config hook. This deploy-time hook executes after HARP is installed and configured and before it is started on all nodes where
HARP is installed.

Bugfixes

TPA-181 Set default python version to 2 on RHEL 7. Formerly, tpaexec could generate a config.yml with the unsupported combination of RHEL 7
and python 3.
TPA-210 Fix aws deployments using existing security groups. Such a deployment used to fail at provision-time but will now work as expected.
TPA-189 Remove group_vars directory on deprovision. This fixes a problem that caused a subsequent provision to fail because of a dangling
symlink.
TPA-175 Correctly configure systemd to leave shared memory segments alone. This only affects source builds.
TPA-160 Allow version setting for haproxy and PEM. This fixes a bug whereby latest versions of packages would be installed even if a specific
version was specified.
TPA-172 Install EFM on the correct set of hosts. EFM should be installed only on postgres servers that are members of the cluster, not servers
which have postgres installed for other reasons, such as PEM servers.
TPA-113 Serialize PEM agent registration. This avoids a race condition when several hosts try to run pemworker --register-agent at the same
time.

TPA 23.5

Released: 2022-08-23

Notable changes

TPA-81 Publish tpaexec and tpaexec-deps packages for Ubuntu 22.04 Jammy
TPA-26 Support harp-proxy and harp-manager installation on a single node. It is now possible to have both harp-proxy and harp-manager service
running on the same target node in a cluster.

TPA 23.4

Released: 2022-08-03

Bugfixes

TPA-152 fix an issue with locale detection during first boot of Debian instances in AWS Hosts would fail to complete first boot which would
manifest as SSH key negotiation issues and errors with disks not found during deployment. This issue was introduced in 23.3 and is related to
TPA-38

TPA 23.3

Released: 2022-08-03

Notable changes

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 22

TPA-118 Exposed two new options in harp-manager configuration. The first sets HARP harp_db_request_timeout similar to dcs
request_timeout but for database connections and the second harp_ssl_password_command specifies a command used to de-obfuscate
sslpassword used to decrypt the sslkey in SSL enabled database connection

Minor changes

TPA-117 Add documentation update on the use of wildcards in package_version options in tpaexec config.yml. This introduces a warning
that unexpected package upgrades can occur during a deploy operation. See documentation in tpaexec-configure.md for more info
TPA-38 Add locale files for all versions of Debian, and RHEL 8 and above. Some EDB software, such as Barman, has a requirement to set the user
locale to en_US.UTF-8 . Some users may wish to also change the locale, character set or language to a local region. This change ensures that
OS files provided by libc are installed on AWS instances during firstboot using user-data scripts. The default locale is en_US.UTF-8 . See
platform_aws.md documentation for more info

TPA-23 Add log config for syslog for cluster services Barman, HARP, repmgr, PgBouncer and EFM. The designated log server will store log files
received in /var/log/hosts directories for these services
TPA-109 Minor refactoring of the code in pgbench role around choosing lock timeout syntax based on a given version of BDR

Bugfixes

TPA-147 For clusters that use the source install method some missing packages for Debian and Rocky Linux were observed. Debian receives
library headers for krb5 and lz4. On RedHat derived OSs the mandatory packages from the "Development Tools" package group and the libcurl
headers have been added
TPA-146 Small fix to the method of package selection for clusters installing Postgres 9.6
TPA-138 Addresses a warning message on clusters that use the "bare" platform that enable the local-repo configure options. As the OS is not
managed by TPAexec in the bare platform we need to inform the user to create the local-repo structure. This previously caused an unhandled
error halting the configure progress
TPA-135 When using --use-local-repo-only with the "docker" platform and the Rocky Linux image initial removal of existing yum
repository configuration on nodes would fail due to the missing commands find and xargs . This change ensures that if the findutils
package exists in the source repo it will be installed first
TPA-111 Remove a redundant additional argument on the command used to register agents with the PEM server when --enable-pem option
is given. Previously, this would have caused no problems as the first argument, the one now removed, would be overridden by the second
TPA-108 Restore SELinux file context for postmaster symlink when Postgres is installed from source. Previously, a cluster using a SELinux
enabled OS that is installing postgres from source would fail to restart Postgres as the systemd daemon would be unable to read the symlink
stored in the Postgres data bin directory. This was discovered in tests using a recently adopted Rocky Linux image in AWS that has SELinux
enabled and in enforcing mode by default

TPA 23.2

Released: 2022-07-13

Notable changes

Add support for Postgres Backup API for use with Barman and PEM. Accessible through the --enable-pg-backup-api option.
SSL certificates can now be created on a per-service basis, for example the server certificate for Postgres Backup API proxy service. Certificates
will be placed in /etc/tpa/<service>/<hostname>.cert These certificates can also be signed by a CA certificate generated for
the cluster.
Placement of Etcd for the BDR-Always-ON architecture When using 'harp_consensus_protocol: etcd', explicitly add 'etcd' to the role for each of
the following instances:

BDR Primary ('bdr' role)
BDR Logical Standby ('bdr' + 'readonly' roles)
only for the Bronze layout: BDR Witness ('bdr' + 'witness' roles)
only for the Gold layout: Barman ('barman' role) Credit: Gianni Ciolli gianni.ciolli@enterprisedb.com

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 23

mailto:gianni.ciolli@enterprisedb.com
mailto:gianni.ciolli@enterprisedb.com

Minor changes

Replace configure argument --2q with --pgextended to reflect product branding changes. Existing configuration will retain expected
behaviour.
Improve error reporting on Docker platform compatibility checks when using version 18 of docker, which comes with Debian old stable.
Add some missing commands to CLI help documentation.
Improved error reporting of configure command.
Add initial support for building BDR 5 from source. Credit: Florin Irion florin.irion@enterprisedb.com
Changes to ensure ongoing compatibility for migration from older versions of Postgres with EDB products.

Bugfixes

Fixed an issue which meant packages for etcd were missing when using the download-packages command to populate the local-repo.
Fixed an issue affecting the use of efm failover manager and the selection of its package dependencies

TPA 23.1

Released: 2022-06-21

This release requires you to run tpaexec setup after upgrading (and will fail with an error otherwise)

Changes to package installation behavior

In earlier versions, running tpaexec deploy could potentially upgrade installed packages, unless an exact version was explicitly specified (e.g., by
setting postgres_package_version). However, this was never a safe, supported, or recommended way to upgrade. In particular, services may not have
been safely and correctly restarted after a package upgrade during deploy.

With this release onwards, tpaexec deploy will never upgrade installed packages. The first deploy will install all required packages (either a
specific version, if set, or the latest available), and subsequent runs will see that the package is installed, and do nothing further. This is a predictable
and safe new default behavior.

If you need to update components, use tpaexec update-postgres . In this release, the command can update Postgres and Postgres-related
packages such as BDR or pglogical, as well as certain other components, such as HARP, pgbouncer, and etcd (if applicable to a particular cluster).
Future releases will safely support upgrades of more components.

Notable changes

Run "harpctl apply" only if the HARP bootstrap config is changed WARNING: This will trigger a single harp service restart on existing clusters
when you run tpaexec deploy , because config.yml is changed to ensure that lists are consistently ordered, to avoid unintended changes in
future deploys
Add tpaexec download-packages command to download all packages required by a cluster into a local-repo directory, so that they can be
copied to cluster instances in airgapped/disconnected environments. See air-gapped.md and local-repo.md for details
Require --harp-consensus-protocol <etcd|bdr> configure option for new BDR-Always-ON clusters TPAexec no longer supplies a
default value here because the choice of consensus protocol can negatively affect failover performance, depending on network latency between
data centres/locations, so the user is in a better position to select the protocol most suitable for a given cluster. This affects the configuration of
newly-generated clusters, but does not affect existing clusters that use the former default of etcd without setting harp_consensus_protocol
explicitly

Minor changes

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 24

mailto:florin.irion@enterprisedb.com
mailto:florin.irion@enterprisedb.com

Install openjdk-11 instead of openjdk-8 for EFM on distributions where the older version is not available
Accept harp_log_level setting (e.g., under cluster_vars) to override the default harp-manager and harp-proxy log level (info)
Configure harp-proxy to use a single multi-host BDR DCS endpoint DSN instead of a list of individual endpoint DSNs, to improve resilience
Omit extra connection attributes (e.g., ssl*) from the local (Unix socket) DSN for the BDR DCS for harp-manager

Bugfixes

Ensure that harp-manager and harp-proxy are restarted if their config changes
Fix harp-proxy errors by granting additional (new) permissions required by the readonly harp_dcs_user
Disable BDR4 transaction streaming when CAMO is enabled If bdr.enable_camo is set, we must disable bdr.default_streaming_mode, which is not
compatible with CAMO-protected transactions in BDR4. This will cause a server restart on CAMO-enabled BDR4 clusters (which could not work
with streaming enabled anyway).

3 TPA installation

To use TPA, you need to install from packages or source and run the tpaexec setup command. If you have an EDB subscription plan, and therefore
have access to the EDB repositories, follow these instructions to install TPA packages.

To install TPA from source, see Installing from source.

See Distribution support for information about the platforms that are supported.

Info

Make absolutely sure that your system has the correct date and time set. Various operations will fail otherwise. We recommend you use a
network time, for example, sudo ntpdate pool.ntp.org .

Quick start

To obtain your token, log in to EDB Repos 2.0. Then execute the following command, substituting your token for <your-token> . Replace <your-
plan> with one of the following according to the EDB plan you're subscribed to: enterprise , standard , community360 , or
postgres_distributed .

Add repository and install TPA on Debian or Ubuntu

Add repository and install TPA on RHEL, Rocky, AlmaLinux, or Oracle Linux

Install additional dependencies

curl -1sLf 'https://downloads.enterprisedb.com/<your-token>/<your-plan>/setup.deb.sh' | sudo -E bash
sudo apt-get install tpaexec

curl -1sLf 'https://downloads.enterprisedb.com/<your-token>/<your-plan>/setup.rpm.sh' | sudo -E bash
sudo yum install
tpaexec

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 25

https://www.enterprisedb.com/repos-downloads

Verify installation (run as a normal user)

More detailed explanations of each step follow.

Where to install TPA

As long as you're using a supported platform, you can install and run TPA from your workstation. This approach is fine for learning, local testing, or
demonstration purposes. if you want to perform a complete deployment on your own workstation, TPA supports deploying to Docker containers.

For production use, we recommend running TPA on a dedicated persistent virtual machine. We recommend this because it ensures that the cluster
directories are retained and available to your team for future cluster management or update. It also means you have to update only one copy of TPA and
you need to provide network access only from a single TPA host to the target instances.

Installing TPA packages

To install TPA, you must first subscribe to an EDB repository that provides it. The preferred source for repositories is EDB Repos 2.0.

To obtain your token, log in to EDB Repos 2.0. Then execute the following command, substituting your token for <your-token> . Replace <your-
plan> with one of the following according to the EDB plan you're subscribed to: enterprise , standard , community360 , or
postgres_distributed .

Add repository on Debian or Ubuntu

Add repository on RHEL, Rocky, AlmaLinux or Oracle Linux

Alternatively, you can obtain TPA from the legacy 2ndQuadrant repository. To do so, log in to the EDB Customer Support Portal and subscribe to the
products/tpa/release repository by adding a subscription under Support/Software/Subscriptions. Then follow the instructions to enable the repository
on your system.

Once you have enabled one of these repositories, you can install TPA as follows.

Install on Debian or Ubuntu

sudo /opt/EDB/TPA/bin/tpaexec
setup

/opt/EDB/TPA/bin/tpaexec
selftest

curl -1sLf 'https://downloads.enterprisedb.com/<your-token>/<your-plan>/setup.deb.sh' | sudo -E bash

curl -1sLf 'https://downloads.enterprisedb.com/<your-token>/<your-plan>/setup.rpm.sh' | sudo -E bash

sudo apt-get install tpaexec

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 26

https://www.enterprisedb.com/repos-downloads
https://techsupport.enterprisedb.com/software_subscriptions/add/products/tpa/

Install on RHEL, Rocky, AlmaLinux, or Oracle Linux

This command installs TPA into /opt/EDB/TPA . It also ensures that other required packages (such as Python 3.9 or later) are installed.

We mention sudo here only to indicate the commands that need root privileges. You can use any other means to run the commands as root.

Setting up the TPA Python environment

Next, run tpaexec setup to create an isolated Python environment and install the correct versions of all required modules.

Note

On Ubuntu versions prior to 20.04, use sudo -H tpaexec setup to avoid subsequent permission errors during tpaexec
configure .

You must run this command as root because it writes to /opt/EDB/TPA , but the process doesn't affect any system-wide Python modules you have
installed (including Ansible).

Add /opt/EDB/TPA/bin to the PATH of the user who normally runs tpaexec commands. For example, you can add this to your .bashrc or
equivalent shell configuration file:

Installing TPA without internet or network access (air-gapped)

You can install TPA onto a server that can't access either the EDB repositories, a Python package index, or both. For information on how to use TPA in
such an environment, see Managing clusters in a disconnected or air-gapped environment.

Downloading TPA packages

If you can't access the EDB repositories directly from the server on which you need to install TPA, you can download the packages from an internet-
connected machine and transfer them. There are several ways to achieve this.

If your internet-connected machine uses the same operating system as the target, we recommend using yumdownloader (RHEL-like) or apt
download (Debian-like) to download the packages.

If this approach isn't possible, contact EDB Support, which can provide you with a download link or instructions appropriate to your subscription.

Installing without access to a Python package index

When you run tpaexec setup , it ordinarily downloads the Python packages from a Python package index. Unless your environment provides a

sudo yum install
tpaexec

sudo /opt/EDB/TPA/bin/tpaexec
setup

export PATH=$PATH:/opt/EDB/TPA/bin

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 27

different index, the default is the official PyPI. If no package index is available, install the tpaexec-deps package in the same way you installed
tpaexec. The tpaexec-deps package (available from the same repository as tpaexec) bundles everything that you would have downloaded, so that
they can be installed without network access. Install the package before you run tpaexec setup , and the bundled copies are used automatically.

Verifying your TPA installation

After completing the installation, verify your local installation:

If this command completes without any errors, your TPA installation is ready for use.

Upgrading TPA

To upgrade to a later release of TPA, you must:

1. Install the latest tpaexec package.
2. Install the latest tpaexec-deps package (if required; see Installing without access to a Python package index).
3. Run tpaexec setup again.

If you subscribed to the TPA package repository, running apt-get update && apt-get upgrade or yum update installs the latest available
versions of these packages. If not, you can install the packages by any means available.

We recommend that you run tpaexec setup again whenever a new version of tpaexec is installed. Some new releases might not strictly require
this, but others can't work without it.

Ansible versions

TPA uses Ansible version 8 by default (ansible-core 2.15).

TPA has experimental support for Ansible 9 (ansible-core 2.16), which can be specified using the --ansible-version argument to tpaexec
setup . It requires Python 3.10 or greater, so if you have edb-python 3.9 installed, you must explicitly set your python version when running tpaexec
setup :

4 Open source TPA

What is Trusted Postgres Architect (TPA)?

TPA is an orchestration tool developed by EnterpriseDB (EDB) that uses Ansible to deploy Postgres clusters according to EDB's recommendations.

tpaexec
selftest

PYTHON=/usr/bin/python3.10 tpaexec setup --ansible-version
9

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 28

https://pypi.org/
https://www.enterprisedb.com/

TPA embodies the best practices followed by EDB, informed by many years of hard-earned experience with deploying and supporting Postgres. These
recommendations apply to quick testbed setups and to production environments.

Next steps

Installing TPA from source
Deploying your first cluster
TPA's full documentation online

TPA open source FAQs

Can I use this if I'm not an EDB customer?

Yes. TPA is an open source project under the GPLv3 license. It supports deploying clusters comprised of open source software, EDB's proprietary
products, or combinations.

Can I report an issue?

Yes. If you're an EDB customer then contact Support. Otherwise open a GitHub Issue.

Can I contribute?

Sure, we'd love to hear from you, but open an issue before you start coding. We're selective with what TPA can and should do, so bug fixes are more likely
to be accepted than new features.

5 Installing TPA from source

You can use TPA from a copy of the source code repository.

Note

To receive EDB support for the software, EDB customers must install TPA from packages.

To run TPA from source, you must install all of the dependencies (for example, Python 3.9+) that the packages would handle for you. Or, download the
source and run TPA in a Docker container. (Either way works fine on Linux and macOS.)

Quickstart

First, you must install the various dependencies: Python 3, Python venv, git, openvpn, and patch. Installing from EDB repositories installs these for you
along with the TPA packages.

Before you install TPA, you must install the required packages:

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 29

Debian/Ubuntu
sudo apt-get install python3 python3-pip python3-venv git openvpn patch

Redhat, Rocky or AlmaLinux (RHEL7)
sudo yum install python3 python3-pip epel-release git openvpn patch

Redhat, Rocky or AlmaLinux (RHEL8)
sudo yum install python36 python3-pip epel-release git openvpn patch

Clone and setup

After the prerequisites are installed, you can clone the repository:

git clone https://github.com/enterprisedb/tpa.git ~/tpa

Cloning creates a tpa directory in your home directory.

If you prefer to check out with SSH, use:

git clone ssh://git@github.com/EnterpriseDB/tpa.git ~/tpa

Add the bin directory to your path. You can find the bin directory in your newly created clone.

Add this line to your .bashrc file (or other profile file for your preferred shell):

export PATH=$PATH:$HOME/tpa/bin

You can now create a working TPA environment by running:

tpaexec setup

This command creates the Python virtual environment that TPA will use in future. All needed packages are installed in this environment. To test whether
this was configured correctly, run:

tpaexec selftest

tpaexec is now installed.

Dependencies

Python 3.9+

TPA requires Python 3.9 or later, available on most modern distributions. If you don't have it, you can use pyenv to install any version of Python you like
without affecting the system packages. (If you weren't already using pyenv, add pyenv to your PATH in .bashrc , and call eval "$(pyenv init
-)" as described in the pyenv documentation.)

First, install pyenv and activate it in
~/.bashrc
See
https://github.com/pyenv/pyenv#installation

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 30

https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv#installation

Virtual environment options

By default, tpaexec setup uses the builtin Python 3 -m venv to create a venv under $TPA_DIR/tpa-venv and activate it whenever
tpaexec is invoked.

You can run tpaexec setup --venv /other/location to specify a different location for the new venv.

However, we strongly suggest leaving the default venv location. If you use a different location, you must also set the environment variable TPA_VENV
to that location. For example, add the following line to your .bashrc or other shell startup scripts:

6 A first cluster deployment

In this short tutorial, you work through deploying a simple M1 architecture deployment onto a local Docker installation. By the end of the tutorial, you
will have four containers, one primary database, two replicas, and a backup node configured and ready for you to explore.

This example runs TPA on an Ubuntu system, but the considerations are similar for most Linux systems.

Installing TPA

If you're an EDB customer, first follow the EDB repo instructions, which install the TPA packages straight from EDB's repositories.

If you're an open source user of TPA, first see the instructions on how to build from the source, which explains how to download TPA from Github.com.

Installing Docker

This tutorial deploys the example deployment onto Docker. If you don't already have Docker installed, you need to set it up.

(e.g., `brew install pyenv` on MacOS
X)

$ pyenv install 3.9.0
Downloading Python-3.9.0.tar.xz...
-> https://www.python.org/ftp/python/3.9.0/Python-
3.9.0.tar.xz
Installing Python-3.9.0...
Installed Python-3.9.0 to
/home/ams/.pyenv/versions/3.9.0

$ pyenv local 3.9.0
$ pyenv version
3.9.0 (set by /home/ams/pyenv/.python-
version)

$ pyenv which python3
/home/ams/.pyenv/versions/3.9.0/bin/python3
$ python3 --version
3.9.0

export TPA_VENV="/other/location"

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 31

To install Docker on Debian or Ubuntu:

sudo apt update
sudo apt install docker.io

For other Linux distributions, see Install Docker Engine.

Add your user to the docker group:

sudo usermod -aG docker <yourusername>
newgrp docker

Cgroups version

Currently, TPA requires Cgroups Version 1 to be configured on your system.

Run:

mount | grep cgroup | head -1

If you don't see a reference to tmpfs in the output, you need to disable cgroups v2.

To make the appropriate changes, run:

echo 'GRUB_CMDLINE_LINUX=systemd.unified_cgroup_hierarchy=false' | sudo tee
/etc/default/grub.d/cgroup.cfg

Then update Grub and reboot your system:

sudo update-grub
sudo reboot

Warning

Giving a user the ability to speak to the Docker daemon lets them trivially gain root on the Docker host. Give only trusted users access to the
Docker daemon.

Creating a configuration with TPA

The next step is to create a configuration. TPA does most of the work for you by way of its configure command. All you have to do is supply
command-line flags and options to select, in broad terms, what you want to deploy. Here's the tpaexec configure command:

tpaexec configure demo --architecture M1 --platform docker --postgresql 15 --enable-repmgr --no-git

This command creates a configuration called demo that has the M1 architecture. It will therefore have a primary, replica, and backup node.

The --platform docker tells TPA to create this configuration on a local Docker instance. It will provision all the containers and OS requirements.
Other platforms include AWS, which does the same with Amazon Web Services, and Bare, which skips to operating system provisioning and goes straight
to installing software on already configured Linux hosts.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 32

https://docs.docker.com/engine/install/

The --postgresql 15 argument instructs TPA to use community Postgres, version 15. There are several options for selecting software, but this is
the most straightforward default for open-source users.

Adding --enable-repmgr tells TPA to configure the deployment to use Replication Manager to handle replication and failover.

Finally, --no-git turns off the feature in TPA that allows you to revision control your configuration using Git.

Run this command, which doesn't return anything at the command line when it's complete. However, a directory called demo is created that contains
some files. These files include config.yml , which is a blueprint for the new deployment.

Provisioning the deployment

Now you're ready to create the containers (or virtual machines) on which to run the new deployment. Use the provision command to achieve this:

tpaexec provision demo

You will see TPA work through the various operations needed to prepare to deploy your configuration.

Deploying

Once the containers are provisioned, you can move on to deployment. Deploying installs, if needed, operating systems and system packages. It then
installs the requested Postgres architecture and performs all the needed configuration.

tpaexec deploy demo

You will see TPA work through the various operations needed to deploy your configuration.

Testing

You can quickly test your newly deployed configuration using the tpaexec test command. This command runs pgbench on your new database.

tpaexec test demo

Connecting

To get to a psql prompt, the simplest route is to log into one of the containers (or VMs or host, depending on configuration) using Docker or SSH. To ping
all the connectable hosts in the deployment, run:

tpaexec ping demo

The output looks something like:

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 33

https://www.repmgr.org/

$ tpaexec ping demo
unfair | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
uptake | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
quondam | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
uptight | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

Select one of the nodes that responded with SUCCESS . This tutorial uses uptake .

If you're only planning on using Docker, use the command docker exec -it uptake /bin/bash , substituting the appropriate hostname.

Another option that works with all types of TPA deployment is to use SSH. To do that, first change current directory to the created configuration
directory.

For example, the tutorial configuration is called demo . Go to that directory and run ssh -F ssh_config ourhostname to connect:

cd demo
ssh -F ssh_config uptake
Last login: Wed Sep 6 10:08:01 2023 from 172.17.0.1
[root@uptake ~]#

In both cases, you're logged in as a root user on the container.

You can now change user to the postgres user using sudo -iu postgres . As postgres, you can run psql. TPA has already configured that user with
a .pgpass file, so you don't need to enter a password.

[root@uptake ~]#
postgres@uptake:~ $ psql
psql (15.4)
Type "help" for help.

postgres=#

You're connected to the database.

You can connect from the host system without using SSH to get into one of the containers. Obtain the IP address of the host you want to connect to from
the ssh_config file:

$ grep "^ *Host" demo/ssh_config
Host *
Host uptight
 HostName 172.17.0.9
Host unfair
 HostName 172.17.0.4
Host quondam

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 34

 HostName 172.17.0.10
Host uptake
 HostName 172.17.0.11

You're going to connect to uptake , so the IP address is 172.17.0.11.

You also need to retrieve the password for the postgres user. Run tpaexec show-password demo postgres to get the stored password from
the system:

tpaexec show-password demo postgres
a9LmI1X^uMOpPoEnLuRdL%L$oRQak3om

Assuming you have a Postgresql client installed, you can then run:

psql --host 172.17.0.11 -U postgres
Password for user postgres:

Enter the password you previously retrieved:

psql (14.9 (Ubuntu 14.9-0ubuntu0.22.04.1), server 15.4)
WARNING: psql major version 14, server major version 15.
 Some psql features might not work.
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.

postgres=#

You're now connected from the Docker host to Postgres running in one of the TPA-deployed Docker containers.

7 Cluster configuration

The tpaexec configure command generates a YAML cluster configuration file that is required by subsequent stages in the provision/deploy/test
cycle.

Quickstart

This command will create a directory named ~/clusters/speedy and generate a configuration file named config.yml that follows the layout
of the architecture named M1 (single primary, N replicas). It will create a git repository in the new directory and make an initial commit containing the
generated config.yml .

The command also accepts various options (some specific to the selected architecture or platform) to modify the configuration, but the defaults are
sensible and intended to be usable straightaway. You are encouraged to read the generated config.yml and fine-tune the configuration to suit your
needs. (Here's an overview of configuration settings that affect the deployment.)

It's possible to write config.yml entirely by hand, but it's much easier to edit the generated file.

[tpa]$ tpaexec configure ~/clusters/speedy --architecture M1 \
 --postgresql 14 \
 --failover-manager
repmgr

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 35

Configuration options

The first argument must be the cluster directory, e.g., speedy or ~/clusters/speedy (the cluster will be named speedy in both cases). We
recommend that you keep all your clusters in a common directory, e.g., ~/clusters in the example above.

The next argument must be --architecture <name> to select an architecture, e.g., M1 or BDR-Always-ON. For a complete list of architectures,
run tpaexec info architectures .

Next, you must specify a flavour and version of Postgres to install.

The arguments above are always mandatory. The rest of the options described here may be safely omitted, as in the example above; the defaults will lead
to a usable result.

Run tpaexec help configure-options for a list of common options.

Architecture-specific options

The architecture you select determines what other options are accepted. Typically, each architecture accepts some unique options as well as the generic
options described below.

For example, with M1 you can use --num-cascaded-replicas 3 to create a cluster with three cascaded replicas. Please consult the
documentation for an architecture for a list of options that it accepts (or, in some cases, requires).

Platform options

Next, you may use --platform <name> to select a platform, e.g., aws or bare.

An architecture may or may not support a particular platform. If not, it will fail to configure the cluster.

The choice of platform affects the interpretation of certain options. For example, if you choose aws, the arguments to --region <region> and --
instance-type <type> must be a valid AWS region name and EC2 instance type respectively. Please refer to the platform documentation for more
details.

If you do not explicitly select a platform, the default is currently aws.

Note: TPA fully supports creating clusters with instances on different platforms, but tpaexec configure cannot currently generate such a
configuration. You must edit config.yml to specify multiple platforms.

Owner

Specify --owner <name> to associate the cluster (by some platform-specific means, e.g., AWS tags) with the name of a person responsible for it.
This is especially important for cloud platforms. By default, the owner is set to the login name of the user running tpaexec provision .

(You may use your initials, or "Firstname Lastname", or anything else that identifies you uniquely.)

Region

Specify --region <region> to select a region.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 36

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/ec2/instance-types/

This option is meaningful only for cloud platforms. The default for AWS is eu-west-1.

Note: TPA fully supports creating clusters that span multiple regions, but tpaexec configure cannot currently generate such a configuration. You
must edit config.yml to specify multiple regions.

Network configuration

By default, each cluster will be configured with a number of randomly selected /28 subnets from the CIDR range 10.33.0.0/16 , depending on the
selected architecture.

Specify --network 192.168.0.0/16 to assign subnets from a different network.

Note: On AWS clusters, this corresponds to the VPC CIDR. See aws documentation for details.

Specify --subnet-prefix 26 to assign subnets of a different size, /26 instead of /28 in this case.

Specify --no-shuffle-subnets to allocate subnets from the start of the network CIDR range, without randomisation, e.g. 10.33.0.0/28 , then
10.33.0.16/28 and so on.

Specify --exclude-subnets-from <directory> to exclude subnets that are already used in existing cluster config.yml files. You can specify
this argument multiple times for each directory.

Note: These options are not meaningful for the "bare" platform, where TPA will not alter the network configuration of existing servers.

Instance type

Specify --instance-type <type> to select an instance type.

This option is meaningful only for cloud platforms. The default for AWS is t3.micro.

Disk space

Specify --root-volume-size 64 to set the size of the root volume in GB. (Depending on the platform, there may be a minimum size required for
the root volume.)

The --postgres-volume-size <size> and --barman-volume-size <size> options are available to set the sizes of the Postgres and
Barman volumes on those architectures and platforms that support separate volumes for Postgres and Barman.

None of these options is meaningful for the "bare" platform, where TPA has no control over volume sizes.

Hostnames

By default, tpaexec configure will randomly select as many hostnames as it needs from a pre-approved list of several dozen names. This should
be enough for most clusters.

Specify --hostnames-from <filename> to select hostnames from a file with one name per line. The file must contain at least as many valid
hostnames as there are instances in your cluster. Each line may contain an optional IP address after the name; if present, this address will be set as the
ip_address for the corresponding instance in config.yml .

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 37

Use --hostnames-pattern '…pattern…' to limit the selection to lines matching an egrep pattern.

Use --hostnames-sorted-by="--dictionary-order" to select a sort(1) option other than --random-sort (which is the default).

Use --hostnames-unsorted to not sort hostnames at all. In this case, they will be assigned in the order they are found in the hostnames file. This
is the default when a hostnames file is explicitly specified.

Use --cluster-prefixed-hostnames to make each hostname begin with the name of the cluster. This can be useful to avoid hostname clashes
when running more than one docker cluster on the same host.

Hostnames may contain only letters (a-z), digits (0-9), and '-'. They may be FQDNs, depending on the selected platform. Hostnames should be in
lowercase; any uppercase characters will be converted to lowercase internally, and any references to these hostnames in config.yml (e.g., upstream:
hostname) must use the lowercase version.

Software selection

Distribution

Specify --distribution <name> to select a distribution.

The selected platform determines which distributions are available, and which one is used by default.

In general, you should be able to use "Debian", "RedHat", "Ubuntu", and "SLES" to select the right images.

This option is not meaningful for the "bare" platform, where TPA has no control over which distribution is installed.

2ndQuadrant and EDB repositories

TPA can enable any 2ndQuadrant or EDB software repository that you have access to through a subscription.

By default, it will install the 2ndQuadrant public repository (which does not need a subscription) and add on any product repositories that the
architecture may require (e.g., the PGD repository).

More detailed explanation of how TPA uses 2ndQuadrant and EDB repositories is available here

Specify --2Q-repositories source/name/maturity … or --edb-repositories repository … to specify the complete list of
2ndQuadrant or EDB repositories to install on each instance in addition to the 2ndQuadrant public repository.

If any EDB repositories are specified, any 2ndQuadrant ones will be ignored.

Use this option with care. TPA will configure the named repositories with no attempt to make sure the combination is appropriate.

To use these options, you must export TPA_2Q_SUBSCRIPTION_TOKEN=xxx or export EDB_SUBSCRIPTION_TOKEN=xxx before you run
tpaexec. You can get a 2ndQuadrant token from the 2ndQuadrant Portal under "Company info" in the left menu, then "Company". You can get an EDB
token from enterprisedb.com/repos.

Local repository support

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 38

Use --enable-local-repo to create a local package repository from which to ship packages to target instances.

In environments with restricted network access, you can instead use --use-local-repo-only to create a local repository and disable all other
package repositories on target instances, so that packages are installed only from the local repository.

The page about Local repository support has more details.

Software versions

Postgres flavour and version

TPA supports PostgreSQL, EDB Postgres Extended, and EDB Postgres Advanced Server (EPAS) versions 11 through 16.

You must specify both the flavour (or distribution) and major version of Postgres to install, for example:

--postgresql 14 will install PostgreSQL 14

--edb-postgres-extended 15 will install EDB Postgres Extended 15

--edb-postgres-advanced 15 --redwood will install EPAS 15 in "Redwood" mode

--edb-postgres-advanced 15 --no-redwood will install EPAS 15 in non-Redwood mode

If you are installing EPAS, you must specify whether it should operate in --redwood or --no-redwood mode, i.e., whether to enable or disable its
Oracle compatibility features.

Installing EDB Postgres Extended or Postgres Advanced Server requires a valid EDB repository subscription.

Package versions

By default, we always install the latest version of every package. This is usually the desired behaviour, but in some testing scenarios, it may be necessary
to select specific package versions using any of the following options:

1. --postgres-package-version 10.4-2.pgdg90+1
2. --repmgr-package-version 4.0.5-1.pgdg90+1
3. --barman-package-version 2.4-1.pgdg90+1
4. --pglogical-package-version '2.2.0*'
5. --bdr-package-version '3.0.2*'
6. --pgbouncer-package-version '1.8*'

You may use any version specifier that apt or yum would accept.

If your version does not match, try appending a * wildcard. This is often necessary when the package version has an epoch qualifier like 2:... .

You may also specify --extra-packages p1 p2 … or --extra-postgres-packages p1 p2 … to install additional packages. The former
lists packages to install along with system packages, while the latter lists packages to install later along with postgres packages. (If you mention
packages that depend on Postgres in the former list, the installation will fail because Postgres will not yet be installed.) The arguments are passed on to
the package manager for installation without any modifications.

The --extra-optional-packages p1 p2 … option behaves like --extra-packages , but it is not an error if the named packages cannot be
installed.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 39

Known issue with wildcard use

Please note that the use of wildcards in *_package_version when added permanently to config.yml , can result in unexpected updates to
installed software during tpaexec deploy on nodes with RHEL 8 and above (or derivative OSs which use dnf such as Rocky Linux). When deploy
runs on an existing cluster that already has packages installed ansible may be unable to match the full package version. For example, if the value for
bdr_package_version was set to 3.6* then ansible would not be able to match this to an installed version of PGD, it would assume no package

is installed, and it would attempt to install the latest version available of the package with the same name in the configured repository, e.g. 3.7.

We are aware of this limitation as an ansible dnf module bug and hope to address this in a future release of TPA.

Building and installing from source

If you specify --install-from-source postgres , Postgres will be built and installed from a git repository instead of installed from packages.
Use 2ndqpostgres instead of postgres to build and install 2ndQPostgres. By default, this will build the appropriate REL_nnn_STABLE branch.

You may use --install-from-source 2ndqpostgres pglogical3 bdr3 to build and install all three components from source, or just use
--install-from-source pglogical3 bdr3 to use packages for 2ndQPostgres, but build and install pglogical v3 and PGD v3 from source. By

default, this will build the master branch of pglogical and PGD.

To build a different branch, append :branchname to the corresponding argument. For example --install-from-source
2ndqpostgres:dev/xxx , or pglogical:bug/nnnn .

You may not be able to install packages that depend on a package that you chose to replace with a source installation instead. For example, PGD v3
packages depend on pglogical v3 packages, so you can't install pglogical from its source repository and PGD from packages. Likewise, you can't install
Postgres from source and pglogical from packages.

Overrides

You may optionally specify --overrides-from a.yml … to load one or more YAML files with settings to merge into the generated config.yml.

Any file specified here is first expanded as a Jinja2 template, and the result is loaded as a YAML data structure, and merged recursively into the
arguments used to generate config.yml (comprising architecture and platform defaults and arguments from the command-line). This process is repeated
for each additional override file specified; this means that settings defined by one file will be visible to any subsequent files.

For example, your override file might contain:

cluster_tags:
 some_tag: "{{ lookup('env', 'SOME_ENV_VAR') }}"

cluster_vars:
 synchronous_commit: remote_write
 postgres_conf_settings:
 effective_cache_size: 4GB

These settings will augment cluster_tags and cluster_vars that would otherwise be in config.yml. Settings are merged recursively, so
cluster_tags will end up containing both the default Owner tag as well as some_tag . Similarly, the effective_cache_size setting will

override that variable, leaving other postgres_conf_settings (if any) unaffected. In other words, you can set or override specific subkeys in
config.yml, but you can't empty or replace cluster_tags or any other hash altogether.

The merging only applies to hash structures, so you cannot use this mechanism to change the list of instances within config.yml. It is most useful to
augment cluster_vars and instance_defaults with common settings for your environment.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 40

That said, the mechanism does not enforce any restrictions, so please exercise due caution. It is a good idea to generate two configurations with and
without the overrides and diff the two config.yml files to make sure you understand the effect of all the overrides.

Ansible Tower

Use the --use-ansible-tower and --tower-git-repository options to create a cluster adapted for deployment with Ansible Tower. See
Ansible Tower for details.

Git repository

By default, a git repository is created with an initial branch named after the cluster, and a single commit is made, with the configure options you used in
the commit message. If you don't have git in your $PATH , tpaexec will not raise an error but the repository will not be created. To suppress creation of
the git repository, use the --no-git option. (Note that in an Ansible Tower cluster, a git repository is required and will be created later by tpaexec
provision if it does not already exist.)

Keyring backend for vault password

TPA generates a cluster specific ansible vault password. This password is used to encrypt other sensitive variables generated for the cluster, postgres
user password, barman user password and so on.

Keyring backend system will leverage the best keyring backend on your system from the list of supported backend by python keyring module
including gnome-keyring and secret-tool.

Default is to store the vault password using system keyring for new cluster. removing keyring_backend: system in config.yml file before any
provision will revert previous default to store vault password in plaintext file.

Using keyring_backend: system also generates a vault_name entry in config.yml used to store the vault password unique storage name. TPA
generate an UUID by default but there is no naming scheme requirements.

Note: When using keyring_backend: system and the same base config.yml file for multiple clusters with same cluster_name , by copying
the config file to a different location, ensure the value pair (vault_name , cluster_name) is unique for each cluster copy.

Note: When using keyring_backend: system and moving an already provisioned cluster folder to a different tpa host, ensure that you export the
associated vault password on the new machine's system keyring. vault password can be displayed via tpaexec show-vault <cluster_dir> .

Examples

Let's see what happens when we run the following command:

[tpa]$ tpaexec configure ~/clusters/speedy --architecture M1 \
 --num-cascaded-replicas 2 --distribution Debian
\
 --platform aws --region us-east-1 --network 10.33.0.0/16
\
 --instance-type t2.medium --root-volume-size 32 \

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 41

There is no output, so there were no errors. The cluster directory has been created and populated.

The cluster configuration is in config.yml, and its neighbours are links to architecture-specific support files that you need not interact with directly.
Here's what the configuration looks like:

 --postgres-volume-size 64 --barman-volume-size 128
\
 --postgresql 14 \
 --failover-manager
repmgr
[tpa]$

$ ls ~/clusters/speedy
total
8
drwxr-xr-x 2 ams ams 4096 Aug 4 16:23
commands
-rw-r--r-- 1 ams ams 1374 Aug 4 16:23
config.yml
lrwxrwxrwx 1 ams ams 51 Aug 4 16:23 deploy.yml
->
 /home/ams/work/2ndq/TPA/architectures/M1/deploy.yml

architecture: M1
cluster_name:
speedy
cluster_tags: {}

cluster_rules:
- cidr_ip: 0.0.0.0/0
 from_port: 22
 proto:
tcp
 to_port: 22
- cidr_ip: 10.33.76.176/28
 from_port: 0
 proto:
tcp
 to_port: 65535
- cidr_ip:
10.33.148.240/28
 from_port: 0
 proto:
tcp
 to_port: 65535
ec2_ami:
 Name: debian-10-amd64-20210721-710
 Owner: '136693071363'
ec2_instance_reachability:
public
ec2_vpc:
 us-east-1:
 Name: Test
 cidr: 10.33.0.0/16

cluster_vars:
 enable_pg_backup_api: false
 failover_manager:
repmgr
 postgres_flavour: postgresql
 postgres_version: '14'
 preferred_python_version: python3

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 42

 use_volatile_subscriptions: false

locations:
- Name: main
 az: us-east-
1a
 region: us-east-
1
 subnet: 10.33.76.176/28
- Name: dr
 az: us-east-
1b
 region: us-east-
1
 subnet:
10.33.148.240/28

instance_defaults:
 default_volumes:
 - device_name: root
 encrypted: true
 volume_size: 32
 volume_type:
gp2
 - device_name:
/dev/sdf
 encrypted: true
 vars:
 volume_for: postgres_data
 volume_size: 64
 volume_type:
gp2
 platform:
aws
 type: t2.medium
 vars:
 ansible_user: admin

instances:
- Name:
upsets
 backup: kayak
 location: main
 node: 1
 role:
 - primary
- Name: zebra
 location: main
 node: 2
 role:
 - replica
 upstream:
upsets
- Name: kayak
 location: main
 node: 3
 role:
 -
barman
 - log-server
 - monitoring-
server
 - witness

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 43

The next step is to run tpaexec provision or learn more about how to customise the configuration of the cluster as a whole or how to configure
an individual instance.

8 tpaexec provision

Provision creates instances and other resources required by the cluster.

The exact details of this process depend both on the architecture (e.g. M1) and platform (e.g. AWS) that you selected while configuring the cluster.

At the end of the provisioning stage, you will have the required number of instances with the basic operating system installed, which TPA can access via
ssh (with sudo to root).

Prerequisites

Before you can provision a cluster, you must generate the cluster configuration with tpaexec configure (and edit config.yml to fine-tune the
configuration if needed).

You may need additional platform-dependent steps. For example, you need to obtain an AWS API access keypair to provision EC2 instances, or set up
LXD or Docker to provision containers. Consult the platform documentation for details.

Quickstart

 upstream:
upsets
 volumes:
 - device_name:
/dev/sdf
 encrypted: true
 vars:
 volume_for:
barman_data
 volume_size: 128
 volume_type:
gp2
- Name: queen
 location: dr
 node: 4
 role:
 - replica
 upstream: zebra
- Name: knock
 location: dr
 node: 5
 role:
 - replica
 upstream: zebra

[tpa]$ tpaexec provision ~/clusters/speedy

PLAY [Provision cluster]
**

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 44

This command will produce lots of output (append -v , -vv , etc. to the command if you want even more verbose output). The output is also logged to
ansible.log in the cluster directory. This can be overriden by setting the environment variable ANSIBLE_LOG_PATH to the path and name of the

desired logfile.

If it completes without error, you may proceed to run tpaexec deploy to install and configure software.

Options

When provisioning cloud instances, it is especially important to make sure instances are directly traceable to a human responsible for them. By default,
TPA will tag EC2 instances as being owned by the login name of the user running tpaexec provision .

Specify --owner <name> to change the name (e.g., if your username happens to be something generic, like postgres or ec2-user). You may use
initials, or "Firstname Lastname", or anything else to uniquely identify a person.

Any other options you specify are passed on to Ansible.

Accessing the instances

After provisioning completes, you should be able to SSH to the instances (after a brief delay to allow the instances to boot up and install their SSH host
keys). As shown in the output above, tpaexec will generate an ssh_config file for you to use.

...

TASK [Set up EC2 instances]

changed: [localhost] => (item=us-east-
1:quirk)
changed: [localhost] => (item=us-east-
1:keeper)
changed: [localhost] => (item=us-east-
1:zealot)
changed: [localhost] => (item=us-east-
1:quaver)
changed: [localhost] => (item=us-east-
1:quavery)
...

TASK [Generate ssh_config file for the cluster]

changed:
[localhost]

PLAY RECAP **
localhost : ok=128 changed=20 unreachable=0 failed=0

real 2m19.386s
user 0m51.819s
sys 0m27.852s

[tpa]$ cd ~/clusters/speedy
[tpa]$ cat
ssh_config
Host *
 Port 22

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 45

You can run tpaexec deploy immediately after provisioning. It will wait as long as required for the instances to come up. You do not need to wait
for the instances to come up, or ssh in to them before you start deployment.

Generated files

During the provisioning process, a number of new files will be created in the cluster directory:

 IdentitiesOnly
yes
 IdentityFile "id_speedy"
 UserKnownHostsFile "known_hosts
tpa_known_hosts"
 ServerAliveInterval 60

Host quirk
 User admin
 HostName
54.227.207.189
Host
keeper
 User admin
 HostName
34.229.111.196
Host
zealot
 User admin
 HostName
18.207.108.211
Host
quaver
 User admin
 HostName 54.236.36.251
Host quavery
 User admin
 HostName
34.200.214.150
[tpa]$ ssh -F ssh_config
quirk
Linux quirk 4.9.0-6-amd64 #1 SMP Debian 4.9.82-1+deb9u3 (2018-03-02)
x86_64

The programs included with the Debian GNU/Linux system are free
software;
the exact distribution terms for each program are described in
the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the
extent
permitted by applicable law.
Last login: Sat Aug 4 12:31:28 2018 from
136.243.148.74
admin@quirk:~$ sudo -i
root@quirk:~#

[tpa]$ ls ~/clusters/speedy
total
240
-rw-r--r-- 1 ams ams 193098 Aug 4 17:59
ansible.log

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 46

We've already studied the sshconfig file, which refers to the `id* files (an SSH keypair generated for the cluster)
and tpa_known_hosts (the signatures of the hostkeys/` installed on the instances).

The vars.json file may be used by tpaexec provision on subsequent invocations with --cached .

The inventory/ directory contains static and dynamic inventory files as well as group and host variable definitions from config.yml.

drwxr-xr-x 2 ams ams 4096 Aug 4 17:38
commands
-rw-r--r-- 1 ams ams 1442 Aug 4 17:54
config.yml
lrwxrwxrwx 1 ams ams 51 Aug 4 17:38 deploy.yml ->
 /opt/EDB/TPA/architectures/M1/deploy.yml
drwxr-xr-x 2 ams ams 4096 Aug 4 17:38
hostkeys
-rw------- 1 ams ams 1675 Aug 4 17:38
id_speedy
-rw------- 1 ams ams 1438 Aug 4 17:38
id_speedy.ppk
-rw-r--r-- 1 ams ams 393 Aug 4 17:38
id_speedy.pub
drwxr-xr-x 4 ams ams 4096 Aug 4 17:50
inventory
-rw-r--r-- 1 ams ams 2928 Aug 4 17:50
tpa_known_hosts
-rw-r--r-- 1 ams ams 410 Aug 4 17:50
ssh_config
-rw-r--r-- 1 ams ams 3395 Aug 4 17:59
vars.json
drwxr-xr-x 2 ams ams 4096 Aug 4 17:38
vault

[tpa]$ cat inventory/00-
speedy
[tag_Cluster_speedy]
quirk ansible_host=54.227.207.189 node=1
platform=aws
keeper ansible_host=34.229.111.196 node=2
platform=aws
zealot ansible_host=18.207.108.211 node=3
platform=aws
quaver ansible_host=54.236.36.251 node=4
platform=aws
quavery ansible_host=34.200.214.150 node=5
platform=aws

[tpa]$ cat inventory/group_vars/tag_Cluster_speedy/01-speedy.yml
cluster_name:
speedy
cluster_tag: tag_Cluster_speedy
postgres_version: 15
tpa_version: v23.10-22-g30c1d5ea
tpa_2q_repositories: []
vpn_network: 192.168.33.0/24

[tpa]$ cat inventory/host_vars/zealot/02-
topology.yml
role:
-
barman
- log-server
- openvpn-
server
- monitoring-
server

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 47

If you now change a variable in config.yml and rerun provision, these files will be updated. If you don't change the configuration, it won't do anything. If
you add a new instance in config.yml and rerun, it will bring up the new instance without affecting the existing ones.

9 tpaexec deploy

Deployment is the process of installing and configuring Postgres and other software on the cluster's servers. This includes setting up replication,
backups, and so on.

At the end of the deployment stage, Postgres will be up and running along with other components like repmgr, Barman, pgbouncer, etc. (depending on
the architecture selected).

Prerequisites

Before you can run tpaexec deploy , you must have already run tpaexec configure to generate the cluster configuration and then
provisioned the servers with tpaexec provision .

Before deployment, you must export TPA_2Q_SUBSCRIPTION_TOKEN=xxx to enable any 2ndQuadrant repositories that require subscription.
You can use the subscription token that you used to install TPA itself. If you forget to do this, an error message will soon remind you.

Quickstart

- witness
upstream: quirk

[tpa]$ tpaexec deploy ~/clusters/speedy -
v
Using /opt/EDB/TPA/ansible/ansible.cfg as config
file

PLAY [Basic initialisation and fact discovery]

...

PLAY [Set up TPA cluster nodes]
**
...

PLAY RECAP ***
zealot : ok=281 changed=116 unreachable=0 failed=0
keeper : ok=284 changed=96 unreachable=0 failed=0
quaver : ok=260 changed=89 unreachable=0 failed=0
quavery : ok=260 changed=88 unreachable=0 failed=0
quirk : ok=262 changed=100 unreachable=0 failed=0

real
7m1.907s
user
3m2.492s
sys
1m5.318s

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 48

This command produces a great deal of output and may take a long time (depending primarily on the latency between the host running tpaexec and the
hosts in the cluster, as well as how long it takes the instances to download the packages they need to install). We recommend that you use at least one
-v during deployment. The output is also logged to ansible.log in the cluster directory.

The exact number of hosts, tasks, and changed tasks may of course vary.

The deploy command takes no options itself—any options you provide after the cluster name are passed on unmodified to Ansible (e.g., -v).

Those who are familiar with Ansible may be concerned by the occasional red "failed" task output scrolling by. Rest assured that if the process does not
stop soon afterwards, the error is of no consequence, and the code will recover from it automatically.

When the deployment is complete, you can run tpaexec test to verify the installation.

Selective deployment

You can limit the deployment to a subset of your hosts by setting deploy_hosts to a comma-separated list of instance names:

This will run the deployment on the given instances, though it will also initially execute some tasks on other hosts to collect information about the state
of the cluster.

(Setting deploy_hosts is the recommended alternative to using Ansible's --limit option, which TPA does not support.)

deploy.yml

The deployment process is architecture-specific. Here's an overview of the various configuration settings that affect the deployment. If you are familiar
with Ansible playbooks, you can follow along as tpaexec applies various roles to the cluster's instances.

Unlike config.yml, deploy.yml is not designed to be edited (and is usually a link into the architectures directory). Even if you want to extend the
deployment process to run your own Ansible tasks, you should do so by creating hooks. This protects you from future implementation changes within a
particular architecture.

10 tpaexec test

Now we run architecture-specific tests against a deployed cluster to verify the installation. At the end of this stage, we have a fully-functioning cluster.

You must have already run tpaexec configure , tpaexec provision , and tpaexec deploy successfully before you can run tpaexec
test .

Quickstart

[tpa]$ tpaexec deploy ~/clusters/speedy -v -e
deploy_hosts=keeper,quaver

[tpa]$ tpaexec test ~/clusters/speedy -v

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 49

Output is once again logged to ansible.log in the cluster directory.

If this command succeeds, your cluster works.

Congratulations.

11 PGD-Always-ON

EDB Postgres Distributed 5 in an Always-ON configuration, suitable for use in test and production.

This architecture is valid for use with EDB Postgres Distributed version 5 only and requires a subscription to EDB Repos 2.0.

Cluster configuration

Overview of configuration options

This example shows an invocation of tpaexec configure for this architecture:

tpaexec configure ~/clusters/pgd-ao \
 --architecture PGD-Always-ON \
 --edb-postgres-extended 15 \
 --platform aws --instance-type t3.micro \
 --distribution Debian \
 --pgd-proxy-routing global \
 --location-names dc1 dc2 dc3 \
 --witness-only-location dc3 \
 --data-nodes-per-location 2

You can list all available options using the help option.

tpaexec configure --architecture PGD-Always-ON --help

Mandatory options

Options Description

--architecture (-a) Must be set to PGD-Always-ON

Postgres flavour and version (e.g. --postgresql
15)

A valid flavour and version specifier.

--pgd-proxy-routing Must be either global or local .

Additional options

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 50

Options Description Behavior if omitted

--platform One of aws , docker , bare . Defaults to aws .

--location-names A space-separated list of location names. The number of locations is
equal to the number of names supplied.

TPA will configure a single location
with three data nodes.

--witness-only-
location

A location name, must be a member of location-names . No witness-only location is added.

--data-nodes-per-
location

The number of data nodes in each location, must be at least 2. Defaults to 3.

--add-proxy-nodes-
per-location

The number of proxy nodes in each location. PGD-proxy will be installed on each
data node.

--enable-camo Sets two data nodes in each location as CAMO partners. CAMO will not be enabled.

--bdr-database The name of the database to be used for replication. Defaults to bdrdb .

--enable-pgd-probes Enable http(s) API endpoints like health/is-ready to probe pgd-
proxy's health.

Disabled by default.

More detail about PGD-Always-ON configuration

A PGD-Always-ON cluster comprises a number of locations, preferably odd. Each location has the same number of data nodes, also preferably odd. If you
don't specify any --location-names , the default is to use a single location with three data nodes.

You can specify location names for the cluster with --location-names dc1 dc2 … . A location represents an independent data center that
provides a level of redundancy, in whatever way this definition makes sense to your use case. Examples include AWS regions, your own data centers, or
any other designation to identify where your servers are hosted.

for AWS users

If you're using TPA to provision an AWS cluster, the locations will be mapped to separate availability zones in the --region you specify. You
can specify multiple --regions , but TPA doesn't currently set up VPC peering to allow instances in different regions to communicate with
each other. For a multi-region cluster, you must set up VPC peering yourself.

Use --data-nodes-per-location N to specify the number of data nodes in each location. The minimum number is 2. The default is 3.

If you specify an even number of data nodes per location, TPA adds an extra witness node to each location. The witness preserves the ability to reliably
establish consensus without the hardware requirements and extra cost of another data node.

A cluster with only two locations would entirely lose the ability to establish global consensus if one of the locations were to fail. You can retain the
ability to establish consensus despite a single-location failure. To do so, we recommend adding a third witness-only location that contains only a witness
node. Use --witness-only-location loc to designate one of your locations as a witness.

By default, every data node in every location also runs PGD Proxy for connection routing. To create separate PGD Proxy instances instead, use --add-
proxy-nodes-per-location 3 (or however many proxies you want to add).

Depending on your use case, you must specify --pgd-proxy-routing local or global to configure how PGD Proxy routes connections to a
write leader. Local routing makes every PGD Proxy route to a write leader within its own location (suitable for geosharding applications). Global routing
makes every proxy route to a single write leader, elected among all available data nodes across all locations.

You can optionally specify:

--bdr-database dbname to set the name of the database with BDR enabled (default: bdrdb)

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 51

--enable-camo to set two data nodes in each region as CAMO partners

--enable-pgd-probes [{http, https}] to enable http(s) api endpoints that allow you to easily probe proxy's health

You can also specify any of the options described by tpaexec help configure-options .

12 BDR-Always-ON

EDB Postgres Distributed 3.7 or 4 in an Always-ON configuration is suitable for use in test and production.

This architecture requires a subscription to the legacy 2ndQuadrant repositories, and some options require a subscription to EDB Repos 1.0. See How
TPA uses 2ndQuadrant and EDB repositories for more detail.

The BDR-Always-ON architecture has four variants, which can be selected with the --layout configure option:

bronze : 2×bdr+primary, bdr+witness, barman, 2×harp-proxy

silver : bronze, with bdr+witness promoted to bdr+primary, and barman moved to separate location

gold : two symmetric locations with 2×bdr+primary, 2×harp-proxy, and barman each; plus a bdr+witness in a third location

platinum : gold, but with one bdr+readonly (logical standby) added to each of the main locations

See EDB's Postgres Distributed Always On Architectures whitepaper for the detailed layout diagrams.

This architecture is meant for use with PGD versions 3.7 and 4.

Cluster configuration

Overview of configuration options

This example shows an invocation of tpaexec configure for this architecture:

tpaexec configure ~/clusters/bdr \
 --architecture BDR-Always-ON \
 --platform aws --region eu-west-1 --instance-type t3.micro \
 --distribution Debian \
 --edb-postgres-advanced 14 --redwood
 --layout gold \
 --harp-consensus-protocol bdr

You can list all available options using the help command.

tpaexec configure --architecture BDR-Always-ON --help

Mandatory options

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 52

https://www.enterprisedb.com/promote/bdr-always-on-architectures

Option Description

--architecture (-a) Must be set to BDR-Always-ON .

--postgresql 14 (for example) Any valid flavour and version specifier.

--layout One of bronze , silver , gold , platinum .

--harp-consensus-protocol One of bdr , etcd .

Additional options

Option Description Behavior if omitted

--platform One of aws , docker , bare . Defaults to aws .

--enable-camo Sets two data nodes in each location as CAMO partners. CAMO isn't
enabled.

--bdr-database The name of the database to be used for replication.
Defaults to
bdrdb .

--enable-harp-
probes

Enable http(s) api endpoints for harp such as health/is-ready to allow probing harp's
health.

Disabled by
default.

More detail about BDR-Always-ON configuration

Specify --layout layoutname to choose a layout: bronze , silver , gold , or platinum . The bronze, gold, and platinum layouts have a
PGD witness node to ensure an odd number of nodes for Raft consensus majority. Witness nodes don't participate in the data replication.

You must specify --harp-consensus-protocol protocolname . The supported protocols are bdr and etcd. See Configuring HARP for
more details.

You can optionally specify --bdr-database dbname to set the name of the database with PGD enabled (default: bdrdb).

You can optionally specify --enable-camo to set the pair of PGD primary instances in each region to be each other's CAMO partners.

You can optionally specify --enable-harp-probes [{http, https}] to enable http(s) api endpoints that allow you to easily probe harp's
health.

HARP2 is enabled by default in the BDR-Always-ON architecture.

You can also specify any of the options described by tpaexec help configure-options .

13 M1

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 53

The M1 architecture is a Postgres cluster with a primary and a streaming replica, one Barman server, and any number of additional replicas cascaded
from the first one. This architecture is suitable for production. It's also suited to testing, demonstrating, and learning due to its simplicity and ability to
be configured with no proprietary components.

If you select subscription-only EDB software with this architecture, it's sourced from EDB Repos 2.0. See How TPA uses 2ndQuadrant and EDB
repositories for more detail.

Default layout

By default, the primary has one read-only replica attached in the same location. The replica, in turn, has one cascaded replica attached in a different
location, where the Barman server is also configured to take backups from the primary.

If the number of Postgres nodes is even, the Barman node is also configured as a witness. Having an odd number of nodes in total helps to establish
consensus in case of automatic failover.

Application and backup failover

The M1 architecture implements failover management in that it ensures that a replica is promoted to take the place of the primary if the primary become
unavailable. However it doesn't provide any automatic facility to reroute application traffic to the primary. If you require automatic failover of
application traffic, you must configure this at the application (for example using multi-host connections) or by using an appropriate proxy or load
balancer and the facilities offered by your selected failover manager.

This is also true of the connection between the backup node and the primary created by TPA. The backup isn't automatically adjusted to target the new
primary in the event of failover. Instead, it remains connected to the original primary. If you're performing a manual failover and want to connect the
backup to the new primary, you can rerun tpaexec deploy . If you want to automatically change the backup source, implement this using your
selected failover manager.

Cluster configuration

Overview of configuration options

This example shows an invocation of tpaexec configure for this architecture:

tpaexec configure ~/clusters/m1 \
 --architecture M1 \
 --platform aws --region eu-west-1 --instance-type t3.micro \

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 54

 --distribution Debian \
 --postgresql 14 \
 --failover-manager repmgr

You can list all available options using the help command:

tpaexec configure --architecture M1 --help

Mandatory options

Parameter Description

--architecture (-a) Must be set to M1 .

Postgres flavour and version (e.g. --postgresql 15) A valid flavour and version specifier.

One of: * --failover-manager {efm, repmgr, patroni} * --enable-efm * --
enable-repmgr * --enable-patroni

Select the failover manager from efm ,
repmgr and patroni .

Additional options

Parameter Description Behavior if omitted

--platform One of aws , docker , bare . Defaults to aws .

--num-cascaded-
replicas

The number of cascaded replicas from the first replica. Defaults to 1.

--enable-haproxy 2 additional nodes will be added as a load balancer layer.
Only supported with Patroni as the failover manager.

HAproxy nodes will not be added to the
cluster.

--patroni-dcs

Select the Distributed Configuration Store backend for
patroni.
Only option is etcd at this time.
Only supported with Patroni as the failover manager.

Defaults to etcd .

More detail about M1 configuration

You can optionally specify --num-cascaded-replicas N to request N cascaded replicas (including 0 for none; default: 1).

You can also specify any of the options described by tpaexec help configure-options .

14 aws

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 55

TPA fully supports provisioning production clusters on AWS EC2.

API access setup

To use the AWS API, you must:

Obtain an access keypair
Add it to your configuration

For example,

The AMI user should at least have following set of permissions so tpaexec can use it to provision ec2 resources.

ec2:AssociateRouteTable
ec2:AttachInternetGateway
ec2:AuthorizeSecurityGroupIngress
ec2:CreateInternetGateway
ec2:CreateRoute
ec2:CreateRouteTable
ec2:CreateSecurityGroup
ec2:CreateSubnet
ec2:CreateTags
ec2:CreateVpc
ec2:DeleteKeyPair
ec2:DeleteRouteTable
ec2:DeleteSecurityGroup
ec2:DeleteSubnet
ec2:DeleteVpc
ec2:DescribeImages
ec2:DescribeInstanceStatus
ec2:DescribeInstances
ec2:DescribeInternetGateways
ec2:DescribeKeyPairs
ec2:DescribeRouteTables
ec2:DescribeSecurityGroups
ec2:DescribeSubnets
ec2:DescribeTags
ec2:DescribeVolumes
ec2:DescribeVpcAttribute
ec2:DescribeVpcClassicLink
ec2:DescribeVpcClassicLinkDnsSupport
ec2:DescribeVpcs
ec2:DisassociateRouteTable
ec2:ImportKeyPair
ec2:ModifyVpcAttribute
ec2:RevokeSecurityGroupIngress
ec2:RunInstances
ec2:TerminateInstances
iam:AddRoleToInstanceProfile

[tpa]$ cat >
~/.aws/credentials
[default]
aws_access_key_id =
AKIAIOSFODNN7EXAMPLE
aws_secret_access_key =
wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 56

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://boto.readthedocs.org/en/latest/boto_config_tut.html

iam:CreateInstanceProfile
iam:CreateRole
iam:DeleteInstanceProfile
iam:DeleteRole
iam:DeleteRolePolicy
iam:GetInstanceProfile
iam:GetRole
iam:GetRolePolicy
iam:ListAttachedRolePolicies
iam:ListGroups
iam:ListInstanceProfiles
iam:ListInstanceProfilesForRole
iam:ListRolePolicies
iam:ListRoles
iam:ListUsers
iam:PassRole
iam:PutRolePolicy
iam:RemoveRoleFromInstanceProfile
kms:CreateGrant
kms:GenerateDataKeyWithoutPlaintext
s3:CreateBucket
s3:GetBucketVersioning
s3:GetObject
s3:GetObjectTagging
s3:ListAllMyBuckets
s3:ListBucket
s3:ListBucketVersions
s3:PutBucketOwnershipControls
s3:PutObject
s3:PutObjectAcl

Introduction

The service is physically subdivided into regions and availability zones. An availability zone is represented by a region code followed by a single letter,
e.g., eu-west-1a (but that name may refer to different locations for different AWS accounts, and there is no way to coordinate the interpretation between
accounts).

AWS regions are completely isolated from each other and share no resources. Availability zones within a region are physically separated, and logically
mostly isolated, but are connected by low-latency links and are able to share certain networking resources.

Networking

All networking configuration in AWS happens in the context of a Virtual Private Cloud within a region. Within a VPC, you can create subnets that is tied
to a specific availability zone, along with internet gateways, routing tables, and so on.

You can create any number of Security Groups to configure rules for what inbound and outbound traffic is permitted to instances (in terms of protocol, a
destination port range, and a source or destination IP address range).

Instances

AWS EC2 offers a variety of instance types with different hardware configurations at different price/performance points. Within a subnet in a particular
availability zone, you can create EC2 instances based on a distribution image known as an AMI, and attach one or more EBS volumes to provide
persistent storage to the instance. You can SSH to the instances by registering an SSH public key.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 57

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html#vpc-security-groups
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Instances are always assigned a private IP address within their subnet. Depending on the subnet configuration, they may also be assigned an ephemeral
public IP address (which is lost when the instance is shut down, and a different ephemeral IP is assigned when it is started again). You can instead assign
a static region-specific routable IP address known as an Elastic IP to any instance.

For an instance to be reachable from the outside world, it must not only have a routable IP address, but the VPC's networking configuration (internet
gateway, routing tables, security groups) must also align to permit access.

Configuration

Here's a brief description of the AWS-specific settings that you can specify via tpaexec configure or define directly in config.yml.

Regions

You can specify one or more regions for the cluster to use with --region or --regions . TPA will generate the required vpc entries associated to
each of them and distribute locations into these regions evenly by using different availability zones while possible.

regions are differents from locations , each location belongs to a region (and an availability zone inside this region). regions are AWS
specific objects, locations are cluster objects.

Note: When specifying multiple regions, you need to manually edit network configurations:

ec2_vpc entries must have non-overlaping cidr networks to allow use of AWS vpc peering. by default TPA will set all cidr to 10.33.0.0/16 .
See VPC for more informations.
each location must be updated with subnet that match the ec2_vpc cidr they belong to. See Subnets for more informations.
TPA creates security groups with basic rules under cluster_rules and those need to be updated to match ec2_vpc cidr for each
subnet cidr. see Security groups for more informations.

VPC peering must be setup manually before tpaexec deploy . We recommand creating VPCs and required VPC peerings before running
tpaexec configure and using vpc-id in config.yml. See VPC for more informations.

VPC (required)

You must specify a VPC to use:

ec2_vpc:
 Name: Test
 cidr: 10.33.0.0/16

This is the default configuration, which creates a VPC named Test with the given CIDR if it does not exist, or uses the existing VPC otherwise.

To create a VPC, you must specify both the Name and the cidr. If you specify only a VPC Name, TPA will fail if a matching VPC does not exist.

If TPA creates a VPC, tpaexec deprovision will attempt to remove it, but will leave any pre-existing VPC alone. (Think twice before creating new
VPCs, because AWS has a single-digit default limit on the number of VPCs per account.)

If you need more fine-grained matching, or to specify different VPCs in different regions, you can use the expanded form:

ec2_vpc:
 eu-west-1:
 Name: Test
 cidr: 172.16.0.0/16

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 58

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html#concepts-public-addresses
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

 us-east-1:
 filters:
 vpc-id: vpc-nnn
 us-east-2:
 Name: Example
 filters:
 [filter expressions]

AMI (required)

You must specify an AMI to use:

ec2_ami:
 Name: xxx
 Owner: self

You can add filter specifications for more precise matching:

ec2_ami:
 Name: xxx
 Owner: self
 filters:
 architecture: x86_64
 [more key/value filters]

(By default, tpaexec configure will select a suitable ec2_ami for you based on the --distribution argument.)

This platform supports Debian 9 (stretch), RedHat Enterprise Linux 7, Rocky 8, Ubuntu 16.04 (Xenial), and SUSE Linux Enterprise Server 15.

Subnets (optional)

Every instance must specify its subnet (in CIDR form, or as a subnet-xxx id). You may optionally specify the name and availability zone for each subnet
that we create:

ec2_vpc_subnets:
 us-east-1:
 192.0.2.0/27:
 az: us-east-1b
 Name: example1
 192.0.2.100/27:
 az: us-east-1b
 Name: example2

Security groups (optional)

By default, we create a security group for the cluster. To use one or more existing security groups, set:

ec2_groups:
 us-east-1:
 group-name:

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 59

 - foo

If you want to customise the rules in the default security group, set cluster_rules :

cluster_rules:
- cidr_ip: 0.0.0.0/0
 from_port: 22
 proto: tcp
 to_port: 22
- cidr_ip: 192.0.2.0/27
 from_port: 0
 proto: tcp
 to_port: 65535
- cidr_ip: 192.0.2.100/27
 from_port: 0
 proto: tcp
 to_port: 65535

This example permits ssh (port 22) from any address, and TCP connections on any port from specific IP ranges. (Note: from_port and to_port define a
numeric range of ports, not a source and destination.)

If you set up custom rules or use existing security groups, you must ensure that instances in the cluster are allowed to communicate with each other as
required (e.g., allow tcp/5432 for Postgres).

Internet gateways (optional)

By default, we create internet gateways for every VPC, unless you set:

ec2_instance_reachability: private

For more fine-grained control, you can set:

ec2_vpc_igw:
 eu-west-1: yes
 eu-central-1: yes
 us-east-1: no

SSH keys (optional)

Set this to change the name under which we register our SSH key.
ec2_key_name: tpa_cluster_name
#
Set this to use an already-registered key.
ec2_instance_key: xxx

S3 bucket (optional)

TPA requires access to an S3 bucket to provision an AWS cluster. This bucket is used to temporarily store files such as SSH host keys, but may also be
used for other cluster data (such as backups).

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 60

By default, TPA will use an S3 bucket named edb-tpa-<aws-account-user-id> for any clusters you provision. (If the bucket does not exist, you
will be asked to confirm that you want TPA to create it for you.)

To use an existing S3 bucket instead, set

cluster_bucket: name-of-bucket

(You can also set cluster_bucket: auto to accept the default bucket name without the confirmation prompt.)

TPA will never remove any S3 buckets when you deprovision the cluster. To remove the bucket yourself, run:

aws s3 rb s3://<bucket> --force

The IAM user you are using to provision the instances must have read and write access to this bucket. During provisioning, tpaexec will provide instances
with read-only access to the cluster_bucket through the instance profile.

Elastic IP addresses

To use elastic IP addresses, set assign_elastic_ip to true in config.yml, either in instance_defaults to affect all the instances in your
cluster or individually on the separate instances as required. By default, this will allocate a new elastic ip address and assign it to the new instance. To
use an elastic IP address that has already been allocated but not yet assigned, use elastic_ip: 34.252.55.252 , substituting in your allocated
address.

Instance profile (optional)

Set this to change the name of the instance profile role we create.
cluster_profile: cluster_name_profile
#
Set this to use an existing instance profile (which must have all the
required permissions assigned to it).
instance_profile_name: xxx

15 bare(-metal servers)

Set platform: bare in config.yml

This platform is meant to support any server that is accessible via SSH, including bare-metal servers as well as already-provisioned servers on any cloud
platform (including AWS).

You must define the IP address(es) and username for each target server:

instances:
 - node: 1
 Name: igor
 platform: bare
 public_ip: 192.0.2.1
 private_ip: 192.0.2.222
 vars:
 ansible_user: xyzzy

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 61

You must ensure that

1. TPA can ssh to the instance as ansible_user
2. The ansible_user has sudo access on the instance

SSH access

In the example above, TPA will ssh to xyzzy@192.0.2.1 to access the instance.

By default, TPA will run ssh-keygen to generate a new SSH keypair in your cluster directory. The private key is named id_cluster_name and the
public key is stored in id_cluster_name.pub .

You must either set ssh_key_file: /path/to/id_keyname to use a different key that the instance will accept, or configure the instance to
allow access from the generated key (e.g., use ssh-copy-id , which will append the contents of id_cluster_name.pub to
~xyzzy/.ssh/authorized_keys).

You must also ensure that ssh can verify the host key(s) of the instance. You can either add entries to the known_hosts file in your cluster directory,
or install the TPA-generated host keys from hostkeys/ssh_host_*_key* in your cluster directory into /etc/ssh on the instance (the
generated tpa_known_hosts file contains entries for these keys).

For example, to ssh in with the generated user key, but keep the existing host keys, you can do:

Run tpaexec ping ~/clusters/speedy to check if it's working. If not, append -vvv to the command to look at the complete ssh command-
line. (Note: Ansible will invoke ssh to execute a command like bash -c 'python3 && sleep 0' on the instance. If you run ssh commands by
hand while debugging, replace this with a command that produces some output and then exits instead, e.g., 'id' .)

For more details:

Use a different ssh key
Manage ssh host keys for bare instances

Distribution support

TPA will try to detect the distribution running on target instances, and fail if it is not supported. TPA currently supports Debian (8/9/10; or
jessie/stretch/buster), Ubuntu (16.04/18.04/20.04/22.04; or xenial/bionic/focal/jammy), and RHEL/CentOS/Rocky/AlmaLinux (7.x/8.x) on bare
instances.

IP addresses

You can specify the public_ip , private_ip , or both for any instance.

TPA uses these IP addresses in two ways: first, to ssh to the instance to execute commands during deployment; and second, to set up communications
within the cluster, e.g., for /etc/hosts or to set primary_conninfo for Postgres.

$ cd ~/clusters/speedy
$ ssh-copy-id -i id_speedy xyzzy@192.0.2.1
$ ssh-keyscan -H 192.0.2.1 >> tpa_known_hosts

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 62

If you specify a public_ip , it will be used to ssh to the instances during deployment. If you specify a private_ip , it will be used to set up
communications within the cluster. If you specify both, the public_ip will be used during deployment, and the private_ip for cluster
communications.

If you specify only one or the other, the address will be used for both purposes. For example, you could set only public_ip for servers on different
networks, or only private_ip if you're running TPA inside a closed network. (Instead of using public/private, you can set ip_address if you need
to specify only one IP address.)

Starting afresh

To start afresh with a cluster on the bare platform, use the appropriate external tools to reinstall, reimage, or reprovision the servers, and repeat the
process described in this document. If your new servers have different IP addresses or if you have a complex ssh setup, it may be easier to run tpaexec
deprovision to remove all the locally created files and then tpaexec provision to recreate them, followed by repeating the process from this document, as
above.

16 Docker

TPA can create Docker containers and deploy a cluster to them. At present, it sets up containers to run systemd and other services as if they were
ordinary VMs.

Deploying to docker containers is an easy way to test different cluster configurations. It is not meant for production use.

Synopsis

Just select the platform at configure-time:

Operating system selection

Use the standard --os Debian/Ubuntu/RedHat/SLES configure option to select which distribution to use for the containers. TPA will build its
own systemd-enabled images for this distribution. These images will be named with a tpa/ prefix, e.g., tpa/redhat:8 .

Use --os-image some/image:name to specify an existing systemd-enabled image instead. For example, the centos/systemd image (based on
CentOS 7) can be used in this way.

TPA does not support Debian 8 (jessie) or Ubuntu 16.04 (xenial) for Docker containers, because of bugs in the old version of systemd shipped on those
distributions.

[tpa]$ tpaexec configure clustername --platform docker
[…]
[tpa]$ tpaexec provision
clustername
[tpa]$ tpaexec deploy
clustername

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 63

https://hub.docker.com/r/centos/systemd/

Installing Docker

We test TPA with the latest stable Docker-CE packages.

This documentation assumes that you have a working Docker installation, and are familiar with basic operations such as pulling images and creating
containers.

Please consult the Docker documentation if you need help to install Docker and get started with it.

On MacOS X, you can install "Docker Desktop for Mac" and launch Docker from the application menu.

CgroupVersion

Support for CgroupVersion 2 is not fully baked yet for docker sdk in ansible and related tooling. So while we recommend using a recent version of
docker; we rely on CgroupVersion 1 until version 2 is fully supported. Instructions below suggest the changes to switch to CgroupVersion 1 if your
platform uses CgroupVersion 2 by default.

On Linux:

$ echo 'GRUB_CMDLINE_LINUX=systemd.unified_cgroup_hierarchy=false' > \
 /etc/default/grub.d/cgroup.cfg
$ update-grub
$ reboot

On MacOS:

1. Edit ~/Library/Group\ Containers/group.com.docker/settings.json and make the following replacement "deprecatedCgroupv1": false
→ "deprecatedCgroupv1": true

2. Restart Docker Desktop app

Permissions

TPA expects the user running it to have permission to access to the Docker daemon (typically by being a member of the docker group that owns
/var/run/docker.sock). Run a command like this to check if you have access:

WARNING: Giving a user the ability to speak to the Docker daemon lets them trivially gain root on the Docker host. Only trusted users should have access
to the Docker daemon.

Docker container privileges

Privileged containers

By default TPA provisions Docker containers in unprivileged mode, with no added Linux capabilities flags. Such containers cannot manage host firewall
rules, file systems, block devices, or most other tasks that require true root privileges on the host.

[tpa]$ docker version --format
'{{.Server.Version}}'
19.03.12

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 64

https://docs.docker.com/
https://docs.docker.com/engine/install/
https://docs.docker.com/get-started/
https://hub.docker.com/editions/community/docker-ce-desktop-mac/

If you require your containers to run in privileged mode, set the privileged boolean variable for the instance(s) that need it, or globally in
instance_defaults , e.g.:

instance_defaults:
 privileged: true

WARNING: Running containers in privileged mode allows the root user or any process that can gain root to load kernel modules, modify host firewall
rules, escape the container namespace, or otherwise act much as the real host "root" user would. Do not run containers in priviliged mode unless you
really need to.

See man capabilities for details on Linux capabilities flags.

security_opts and the no-new-privileges flag

tpaexec can start docker containers in a restricted mode where processes cannot increase their privileges. setuid binaries are restricted, etc. Enable this
in tpaexec with the instance_defaults or per-container variable docker_security_opts :

instance_defaults:
 docker_security_opts:
 - no-new-privileges

Other arguments to docker run 's --security-opts are also accepted, e.g. SELinux user and role.

Linux capabilities flags

tpaexec exposes Docker's control over Linux capabilities flags with the docker_cap_add list variable, which may be set per-container or in
instance_defaults . See man capabilities , the docker run documentation and the documentation for the Ansible
docker_containers module for details on capabilities flags.

Docker's --cap-drop is also supported via the docker_cap_drop list.

For example, to run a container as unprivileged, but give it the ability to modify the system clock, you might write:

instance_defaults:
 privileged: false
 docker_cap_add:
 - sys_time
 docker_cap_drop:
 - all

Docker storage configuration

Caution: The default Docker configuration on many hosts uses lvm-loop block storage and is not suitable for production deployments. Run docker
info to check which storage driver you are using. If you are using the loopback scheme, you will see something like this:

 Storage Driver: devicemapper
 …
 Data file: /dev/loop0

Consult the Docker documentation for more information on storage configuration:

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 65

Storage Drivers
Configuring lvm-direct for production

Docker container management

All of the docker containers in a cluster can be started and stopped together using the start-containers and stop-containers commands:

These commands don't provision or deprovision containers, or even connect to them; they are intended to save resources when you're temporarily not
using a docker cluster that you need to keep available for future use.

For a summary of the provisioned docker containers in a cluster, whether started or stopped, use the list-containers command:

17 Cluster configuration

With TPA, the way to make any configuration change to a cluster is to edit config.yml and run the provision/deploy/test cycle. The process is
carefully designed to be idempotent and to make changes only in response to a change in the configuration or on the instances.

The tpaexec configure command generates a sensible config.yml file for you, but it covers only the most common topology and
configuration options. If you need something beyond the defaults, or you need to make changes after provisioning the cluster, you need to edit
config.yml .

An overview of the configuration mechanisms available follows. For more details about the specific variables you can set to customize the deployment
process, see Instance configuration.

config.yml

Your config.yml file is a YAML format text file that represents all aspects of your desired cluster configuration. Here's a minimal example of a
cluster with two instances:

[tpa]$ tpaexec start-containers
clustername
[tpa]$ tpaexec stop-containers
clustername

[tpa]$ tpaexec list-containers
clustername

cluster_name:
speedy

cluster_vars:
 postgres_version: 14

instances:
- node: 1
 Name:
one
 role: primary
 platform:
docker

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 66

https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/#configure-direct-lvm-mode-for-production
https://yaml.org/

These three definitions are central to your cluster configuration. The file might contain many other definitions (including platform-specific details), but
the list of instances with vars set either for one instance or for the whole cluster are the basic building blocks of every TPA configuration.

All tpaexec configure options translate to config.yml variables in some way. A single option can affect several variables. (For example, --
bdr-version might set postgres_version , tpa_2q_repositories , edb_repositories , extra_postgres_extensions , and so
on.) But you can always accomplish with an editor the same things you can by running the command.

In terms of YAML syntax, config.yml as a whole represents a hash with keys such as cluster_vars and instances .

Note

You must ensure that each key is defined only once. If you were to inadvertently repeat the cluster_vars , say, the second definition
would completely override the first, and your next deployment could make unintended changes because of missing (shadowed) variables.

TPA checks the consistency of the overall cluster topology. For example, if you declare an instance with the replica role, you must also declare the name
of its upstream instance, and that instance must exist. However, TPA doesn't prevent you from setting variables on the instances. Exercise due caution
and try out changes in a test environment before rolling them out into production.

Variables

In Ansible terminology, most configuration settings are “inventory variables.” TPA translates cluster_vars into group_vars that apply to the
cluster as a whole and each instance's vars into host_vars in the inventory during provisioning. Deployment then uses the inventory values.

Note

After you change config.yml , remember to run tpaexec provision before tpaexec deploy .

You can set any variable for the entire cluster, an individual host, or both. Host variables override group variables. In practice, setting x: 42 in
cluster_vars is the same as setting it in every host's vars . A host that needs x during deployment sees the value 42 either way. A host always

sees the most specific value, so it's convenient to set some default value for the group and override it for specific instances as required.

Whenever possible, defining variables in cluster_vars and overriding them for specific instances results in a concise configuration. because there's
less repetition, it's easier to review and change. Beyond that, it's up to you to decide whether any given setting makes more sense as a group or host
variable.

Cluster variables

 vars:
 ansible_user: root
 x: 42

- node: 2
 Name:
two
 role: replica
 platform:
docker
 upstream:
one
 vars:
 ansible_user: root
 x: 53

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 67

The keys under cluster_vars can map to any valid YAML type and are translated directly into group variables in the Ansible inventory:

In this case, tpaexec provision writes three variables (a string, a list, and a hash) to the inventory in group_vars/tag_Cluster_name/01-
cluster_name.yml .

Instance variables

We use the term “instance variables” to refer to any variables that are defined for a specific instance in config.yml . This example shows a typical
instance definition:

The variables defined in this instance's vars will all become host variables in the inventory, but all host vars in the inventory don't come from vars
alone. Some other instance settings, including platform , location , volumes , and role , are also copied to the inventory as host vars .
However, you can't define these settings under vars or cluster_vars instead.

The settings outside vars can describe the properties of the instance (such as Name and node) or its place in the topology of the cluster (such as
role and backup). Or they can be platform-specific attributes (such as instance type and volumes). Other than knowing that they can't be

defined under vars , it's rarely necessary to distinguish between these instance settings and instance variables.

cluster_vars:
 postgres_version: 14
 tpa_2q_repositories:
 -
products/bdr3/release
 - products/pglogical3/release
 postgres_conf_settings:
 bdr.trace_replay: true

instances:
- Name:
unwind
 node: 1
 backup: unkempt
 location:
a
 role:
 - primary
 -
bdr
 volumes:
 - device_name: root
 encrypted: true
 volume_size: 16
 volume_type:
gp2
 - device_name: /dev/xvdf
 encrypted: true
 vars:
 volume_for: postgres_data
 volume_size: 64
 volume_type:
gp2
 platform:
aws
 type:
t3.micro
 vars:
 ansible_user: ec2-user
 postgres_conf_directory: /opt/postgres/conf

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 68

In this case, tpaexec provision writes a number of host variables to the inventory in host_vars/unwind/01-instance_vars.yml .

instance_defaults

This setting is a mechanism to further reduce repetition in config.yml . It's most useful for instance settings that can't be defined as
cluster_vars . For example, you can write the following:

Whatever you specify under instance_defaults serves as the default for every entry in instances . In this example, it saves spelling out the
platform and type of each instance and makes it easier to change all your instances to a different type. If any instance specifies a different value,

that value takes precedence over the default.

It might help to think of instance_defaults as being a macro facility to use in defining instances . What's ultimately written to the inventory
comes from the (expanded) definition of instances alone. If you're trying to decide whether to put something in cluster_vars or
instance_defaults , it probably belongs in the former unless it can't be defined as a variable (for example, platform or type). This is true for

many platform-specific properties, such as AWS resource tags, that are used only in provisioning and not during deployment.

The instance_defaults mechanism does nothing to stop you from using it to fill in the vars for an instance. (Default hash values are merged
with any hash specified in the instances entry.) However, there isn't a particular advantage to doing this rather than setting the same default in
cluster_vars and overriding it for an instance if necessary. When in doubt, use cluster_vars .

Locations

You can also specify a list of locations in config.yml :

instance_defaults:
 platform:
aws
 type:
t3.micro
 tags:
 AWS_ENVIRONMENT_SPECIFIC_TAG_KEY:
some_mandated_value

instances:
- node: 1
 Name:
one
- node: 2
 Name:
two
-
…

locations:
- Name: first
 az: eu-west-
1a
 region: eu-west-
1
 subnet:
10.33.110.128/28

- Name:
second

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 69

If an instance specifies location: first (or location: 0), the settings under that location serve as defaults for that instance. Just like
instance_defaults , an instance can override the defaults that it inherits from its location. Similarly, you can use this feature to fill in vars for

an instance. This approach can be useful if you have some defaults that apply to only half your instances and different values for the other half, as with
the platform-specific settings in the example.

Locations represent a collection of settings that instances can “opt in” to. You can use them to stand for different data centers, AWS regions, Docker
hosts, or something else. TPA doesn't expect or enforce any particular interpretation.

18 Instance configuration

This is an overview of the TPA settings you can use to customize the deployment process on cluster instances.

There's also an overview of configuring a cluster, which explains how to use cluster and instance variables together to write a concise, easy-to-review
config.yml .

System-level configuration

The first thing TPA does is to ensure that Python is bootstrapped and ready to execute Ansible modules (a distribution-specific process). Then it
completes various system-level configuration tasks before it configures Postgres.

Distribution support
Python environment (preferred_python_version)
Environment variables (for example, https_proxy)

Package repositories

You can use the pre-deploy hook to execute tasks before any package repositories are configured.

Configure YUM repositories (for RHEL, Rocky, and AlmaLinux)

Configure APT repositories (for Debian and Ubuntu)

Configure 2ndQuadrant and EDB repositories (on any system)

Configure a local package repository (to ship packages to target instances)

You can use the post-repo hook to execute tasks after package repository configuration. For example, you can use it to correct a problem with the
repository configuration before installing any packages.

 az: us-east-
1b
 region: us-east-
1
 subnet: 10.33.75.0/24

instances:
- node: 1
 Name:
one
 location: first
…

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 70

Package installation

Once the repositories are configured, packages are installed at various stages throughout the deployment, beginning with a batch of system packages:

Install non-Postgres packages (for example, acl, openssl, sysstat)

Postgres and other components (for example, Barman, repmgr, pgbouncer) are installed separately according to the cluster configuration. See Other
components.

Other system-level tasks

Create and mount file systems (including RAID, LUKS setup)
Upload artifacts (files, directories, tar archives)
Set sysctl values
Configure /etc/hosts
Manage ssh_known_hosts entries
Add system locale

Skipping deployment completely

To prevent TPA from doing any part of the deployment process on an instance - in other words, if you want TPA to provision the instance and then leave it
alone - set the provision_only setting for the instance to true in config.yml . This setting will make TPA omit the instance entirely from the
inventory which tpaexec deploy sees.

Postgres

Postgres configuration is an extended process that's interleaved with the configuration of other components like repmgr and pgbouncer. The first step is
to install Postgres.

Version selection

Use the configure options to select a Postgres flavor and version, or set postgres_version in config.yml to specify the Postgres major version
you want to install.

That's all you need to do to set up a working cluster. Everything else described here is optional. You can control every aspect of the deployment if you
want to, but the defaults are carefully selected to give you a sensible cluster as a starting point.

Installation

The default postgres_installation_method is to install packages for the version of Postgres you selected, along with various extensions,
according to the architecture's needs:

Install Postgres and Postgres-related packages (for example, pglogical, BDR, and so on)

Build and install Postgres and extensions from source (for development and testing)

Whichever installation method you choose, TPA can give you the same cluster configuration with a minimum of effort.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 71

Configuration

Configure the postgres Unix user

Run initdb to create the PGDATA directory

Configure pg_hba.conf

Configure pg_ident.conf

Configure postgresql.conf

You can use the postgres-config hook to execute tasks after the Postgres configuration files are installed (for example, to install additional configuration
files).

Once the Postgres configuration is in place, TPA installs and configures other components, such as Barman, repmgr, pgbouncer, and haproxy, according
to the details of the architecture.

Other components

Configure Barman
Configure pgbouncer
Configure haproxy
Configure HARP
Configure EFM

Configuring and starting services

TPA installs systemd service unit files for each service. The service for Postgres is named postgres.service . You can use systemctl start
postgres to start it and systemctl stop postgres to stop it.

If you're deploying a cluster for the first time, TPA starts the Postgres service at this point. On an existing cluster, if there are any relevant configuration
changes, TPA reloads or restarts the Postgres service as appropriate. If there are no changes and Postgres is already running, it leaves the service alone.
(If Postgres isn't running on an existing cluster, TPA starts it.)

In any case, Postgres is running at the end of this step.

After starting Postgres

Create Postgres users

Create Postgres tablespaces

Create Postgres databases

Configure pglogical replication

Configure .pgpass

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 72

You can use the postgres-config-final hook to execute tasks after the post-startup Postgres configuration is complete (for example, to perform SQL
queries to create objects or load data).

Configure BDR

You can use the post-deploy hook to execute tasks after the deployment process is complete.

19 Building from source

Warning

This option is intended for developers and advanced users. Only software built and tested by EDB is supported by EDB. Please refer to Self-
Managed Supported Open Source Software.

TPA can build Postgres and other required components from source and deploy a cluster with exactly the same configuration as with the default
packaged installation. This ability makes it possible to deploy repeatedly from source to quickly test changes in a realistic, fully configured cluster that
reproduces every aspect of a particular setup, regardless of architecture or platform.

You can even combine packaged installations of certain components with source builds of others. For example, you can install Postgres from packages
and compile pglogical and PGD from source. However, package dependencies prevent installing pglogical from source and PGD from packages.

Source builds are meant for use in development, testing, and for support operations.

Quick start

Set up a cluster with 2ndQPostgres, pglogical3, and bdr all built from stable branches:

On Socker clusters, you can also build components from local work trees instead of a remote git repository:

After deploying your cluster, you can use tpaexec deploy … --skip-tags build-clean on subsequent runs to reuse build directories.
Otherwise, the build directory is emptied before starting the build.

$ tpaexec configure ~/clusters/speedy -a BDR-Always-ON \
 --layout bronze
\
 --harp-consensus-protocol etcd \
 --install-from-source \
 2ndqpostgres:2QREL_13_STABLE_dev \
 pglogical3:REL3_7_STABLE
\
 bdr3:REL3_7_STABLE

$ tpaexec configure ~/clusters/speedy \
 --architecture BDR-Always-ON --layout bronze
\
 --harp-consensus-protocol etcd \
 --platform docker
\
 --install-from-source 2ndqpostgres:2QREL_13_STABLE_dev \
 pglogical3 bdr3 \
 --local-source-directories \
 pglogical3:~/src/pglogical
bdr3:~/src/bdr

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 73

https://www.enterprisedb.com/product-compatibility/edb-supported-open-source-software.pdf

BDR, and other components with custom locations and build parameters.

Configuration

There are two aspects to configuring source builds.

If you want a cluster running a particular combination of sources, run tpaexec configure to generate a configuration with sensible defaults to
download, compile, and install the components you select. You can build Postgres or Postgres Extended, pglogical, and BDR and specify branch names
to build from, as shown in the examples in Quick start.

The underlying mechanism is capable of much more than the command-line options allow. By editing config.yml , you can clone different source
repositories, change the build location, specify different configure or build parameters, redefine the build commands entirely, and so on. You can,
therefore, build things other than Postgres, pglogical, and BDR.

For the available options, see:

Building Postgres from source

Building extensions with install_from_source

Local source directories

You can use TPA to provision Docker containers that build Postgres and extensions from your local source directories instead of from a Git repository.

Suppose you're using --install-from-source to declare what you want to build:

By default, this command results in a cluster configuration that cases tpaexec deploy to clone the known repositories for Postgres Extended,
pglogical3, and bdr3, checks out the given branches, and builds them. But you can add --local-source-directories to specify that you want
the sources to be taken directly from your host machine instead:

$ tpaexec configure ~/clusters/speedy \
 --architecture BDR-Always-ON --layout bronze
\
 --harp-consensus-protocol etcd \
 --platform docker
\
 --install-from-source 2ndqpostgres:2QREL_13_STABLE_dev \
 pglogical3:REL3_7_STABLE bdr3:REL3_7_STABLE
\

…

$ tpaexec configure ~/clusters/speedy \
 --architecture BDR-Always-ON --layout bronze
\
 --harp-consensus-protocol etcd \
 --platform docker
\
 --install-from-source 2ndqpostgres:2QREL_13_STABLE_dev \
 pglogical3 bdr3 \
 --local-source-directories \
 pglogical3:~/src/pglogical bdr3:~/src/bdr
\

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 74

This configuration installs Postgres Extended from the repository, but obtains pglogical3 and bdr3 sources from the given directories on the host. These
directories are bind-mounted read-only into the Docker containers at the same locations where the git repository would have been cloned to, and the
default (out-of-tree) build proceeds as usual.

If you specify a local source directory for a component, you can't specify a branch to build (see pglogical3:REL3_7_STABLE versus plogical3
for --install-from-source in the previous examples). The source directory is mounted read-only in the containers, so TPA can't use git pull
or git checkout to update it. You get whichever branch is checked out locally, including any uncommitted changes.

Using --local-source-directories includes a list of Docker volume definitions in config.yml :

ccache

TPA installs ccache by default for source builds of all kinds. When you're using a Docker cluster with local source directories, by default a new Docker
volume is attached to the cluster's containers to serve as a shared ccache directory. This volume is completely isolated from the host and is removed
when the cluster is deprovisioned.

Use the --shared-ccache /path/to/host/ccache configure option to specify a longer-lived shared ccache directory. This directory is bind-
mounted read-write into the containers, and its contents are shared between the host and the containers.

(By design, there's no way to install binaries compiled on the host directly into the containers.)

Rebuilding

After deploying a cluster with components built from source, run tpaexec rebuild-sources to quickly rebuild and redeploy just those
components. This command is faster than running tpaexec deploy but doesn't apply any configuration changes.

20 TPA hooks

TPA can set up fully-functional clusters with no user intervention, and already provides a broad variety of settings to control your cluster configuration,
including custom repositories and packages, custom Postgres configuration (both pg_hba.conf and postgresql.conf), and so on.

You can write hook scripts to address specific needs that are not met by the available configuration settings. Hooks allow you to execute arbitrary
Ansible tasks during the deployment.

Hooks are the ultimate extension mechanism for TPA, and there is no limit to what you can do with them. Please use them with caution, and keep in
mind the additional maintenance burden you are taking on. The TPA developers have no insight into your hook code, and cannot guarantee compatibility
between releases beyond invoking hooks at the expected stage.

Summary

…

local_source_directories:
 - /home/ams/src/pglogical:/opt/postgres/src/pglogical:ro
 -
/home/ams/src/bdr:/opt/postgres/src/bdr:ro
 - ccache-bdr_src_36-20200828200021:/root/.ccache:rw

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 75

If you create files with specific names under the hooks subdirectory of your cluster directory, TPA will invoke them at various stages of the deployment
process, as described below.

Hook scripts are invoked with include_tasks , so they are expected to be YAML files containing a list of Ansible tasks (not a playbook, which
contains a list of plays). Unless otherwise documented below, hooks are unconditionally executed for all hosts in the deployment.

General-purpose hooks

pre-deploy

TPA invokes hooks/pre-deploy.yml immediately after bootstrapping Python—but before doing anything else like configuring repositories and
installing packages. This is the earliest stage at which you can execute your own code.

You can use this hook to set up custom repository configuration, beyond what you can do with apt_repositories or yum_repositories .

post-repo

TPA invokes hooks/post-repo.yml after configuring package repositories. You can use it to make corrections to the repository configuration
before beginning to install packages.

pre-initdb

TPA invokes hooks/pre-initdb.yml before deciding whether or not to run initdb to create PGDATA if it does not exist. You should not ordinarily
need to use this hook (but if you use it to create PGDATA yourself, then TPA will skip initdb).

postgres-config

TPA invokes hooks/postgres-config.yml after generating Postgres configuration files, including pg_hba.conf and the files in conf.d, but before
the server has been started.

You can use this hook, for example, to create additional configuration files under conf.d .

postgres-config-final

TPA invokes hooks/postgres-config-final.yml after starting Postgres and creating users, databases, and extensions. You can use this hook
to execute SQL commands, for example, to perform custom extension configuration or create database objects.

barman-pre-config

$ mkdir ~/clusters/speedy/hooks
$ cat > ~/clusters/speedy/hooks/pre-
deploy.yml

- debug: msg="hello
world!"

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 76

TPA invokes hooks/barman-pre-config.yml after installing Barman and setting up Barman users, but before generating any Barman
configuration.

You can use this hook, for example, to perform any tasks related with Barman certificate files or mount points.

harp-config

TPA invokes hooks/harp-config.yml after generating HARP configuration files, but before the HARP service has been started.

You can use this hook, for example, to perform any customizations to the HARP proxy that are not provided by the built-in interface of TPA.

Please note that this hook will be run in any node that installs HARP packages, including PGD nodes.

post-deploy

TPA invokes hooks/post-deploy.yml at the end of the deployment.

You can go on to do whatever you want after this stage.

If you use this hook to make changes to any configuration files that were generated or altered during the TPA deployment, you run the risk that the next
tpaexec deploy will overwrite your changes (since TPA doesn't know what your hook might have done).

PGD hooks

These hooks are specific to PGD deployments.

bdr-pre-node-creation

TPA invokes hooks/bdr-pre-node-creation.yml on all instances before creating a PGD node on any instance for the first time. The hook will
not be invoked if all required PGD nodes already exist.

bdr-post-group-creation

TPA invokes hooks/bdr-post-group-creation.yml on all instances after creating any PGD node group on the first_bdr_primary
instance. The hook will not be invoked if the required PGD groups already exist.

bdr-pre-group-join

TPA invokes hooks/bdr-pre-group-join.yml on all instances after creating, changing or removing the replication sets and configuring the
required subscriptions, before the node join.

You can use this hook to execute SQL commands and perform other adjustments to the replication set configuration and subscriptions that might be
required before the node join starts.

For example, you can adjust the PGD witness replication set to automatically add new tables and create DDL filters in general.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 77

Other hooks

postgres-pre-update, postgres-post-update

The upgrade command invokes hooks/postgres-pre-update.yml on a particular instance before it installs any packages, and invokes
hooks/postgres-post-update.yml after the package installation is complete. Both hooks are invoked only on the instance being updated.

You can use these hooks to customise the update process for your environment (e.g., to install other packages and stop and restart services that TPA
does not manage).

New hooks

EDB adds new hooks to TPA as the need arises. If your use case is not covered by the existing hooks, please contact us to discuss the matter.

21 Upgrading your cluster

The tpaexec upgrade command is used to upgrade the software running on your TPA cluster (tpaexec deploy will not perform upgrades).

(This command replaces the earlier tpaexec update-postgres command.)

Introduction

If you make any changes to config.yml, the way to apply those changes is to run tpaexec provision followed by tpaexec deploy .

The exception to this rule is that tpaexec deploy will refuse to install a different version of a package that is already installed. Instead, you must
use tpaexec upgrade to perform software upgrades.

This command will try to perform the upgrade with minimal disruption to cluster operations. The exact details of the specialised upgrade process depend
on the architecture of the cluster, as documented below.

When upgrading, you should always use barman to take a backup before beginning the upgrade and disable any scheduled backups which would take
place during the time set aside for the upgrade.

In general, TPA will proceed instance-by-instance, stopping any affected services, installing new packages, updating the configuration if needed,
restarting services, and performing any runtime configuration changes, before moving on to do the same thing on the next instance. At any time during
the process, only one of the cluster's nodes will be unavailable.

When upgrading a cluster to PGD-Always-ON or upgrading an existing PGD-Always-ON cluster, you can enable monitoring of the status of your proxy
nodes during the upgrade by adding the option -e enable_proxy_monitoring=true to your tpaexec upgrade command line. If enabled,
this will create an extra table in the bdr database and write monitoring data to it while the upgrade takes place. The performance impact of enabling
monitoring is very small and it is recommended that it is enabled.

Configuration

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 78

In many cases, minor-version upgrades do not need changes to config.yml. Just run tpaexec upgrade , and it will upgrade to the latest available
versions of the installed packages in a graceful way (what exactly that means depends on the details of the cluster).

Sometimes an upgrade involves additional steps beyond installing new packages and restarting services. For example, in order to upgrade from BDR4 to
PGD5, one must set up new package repositories and make certain changes to the BDR node and group configuration during the process.

In such cases, where there are complex steps required as part of the process of effecting a software upgrade, tpaexec upgrade will perform those
steps. For example, in the above scenario, it will configure the new PGD5 package repositories (which deploy would also normally do).

However, it will make only those changes that are directly required by the upgrade process itself. For example, if you edit config.yml to add a new
Postgres user or database, those changes will not be done during the upgrade. To avoid confusion, we recommend that you tpaexec deploy any
unrelated pending changes before you begin the software upgrade process.

Upgrading from BDR-Always-ON to PGD-Always-ON

Note: The upgrade procedure from BDR-Always-ON to PGD-Always-ON for camo enabled clusters using BDR version 3.7 is not yet supported. This
support will come in a later release.

To upgrade from BDR-Always-ON to PGD-Always-ON (that is, from BDR3/4 to PGD5), first run tpaexec reconfigure :

$ tpaexec reconfigure ~/clusters/speedy\
 --architecture PGD-Always-ON\
 --pgd-proxy-routing local

This command will read config.yml, work out the changes necessary to upgrade the cluster, and write a new config.yml. For details of its invocation, see
the command's own documentation. After reviewing the changes, run tpaexec upgrade to perform the upgrade:

$ tpaexec upgrade ~/clusters/speedy\

Or to run the upgrade with proxy monitoring enabled,

$ tpaexec upgrade ~/clusters/speedy\
 -e enable_proxy_monitoring=true

tpaexec upgrade will automatically run tpaexec provision , to update the ansible inventory. The upgrade process does the following:

1. Checks that all preconditions for upgrading the cluster are met.
2. For each instance in the cluster, checks that it has the correct repositories configured and that the required postgres packages are available in

them.
3. For each BDR node in the cluster, one at a time:

Fences the node off to ensure that harp-proxy doesn't send any connections to it.
Stops, updates, and restarts postgres, including replacing BDR4 with PGD5.
Unfences the node so it can receive connections again.
Updates pgbouncer and pgd-cli, as applicable for this node.

4. For each instance in the cluster, updates its BDR configuration specifically for BDR v5
5. For each proxy node in the cluster, one at a time:

Sets up pgd-proxy.
Stops harp-proxy.
Starts pgd-proxy.

6. Removes harp-proxy and its support files.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 79

PGD-Always-ON

When upgrading an existing PGD-Always-ON (PGD5) cluster to the latest available software versions, the upgrade process does the following:

1. Checks that all preconditions for upgrading the cluster are met.
2. For each instance in the cluster, checks that it has the correct repositories configured and that the required postgres packages are available in

them.
3. For each BDR node in the cluster, one at a time:

Fences the node off to ensure that pgd-proxy doesn't send any connections to it.
Stops, updates, and restarts postgres.
Unfences the node so it can receive connections again.
Updates pgbouncer, pgd-proxy, and pgd-cli, as applicable for this node.

BDR-Always-ON

For BDR-Always-ON clusters, the upgrade process goes through the cluster instances one by one and does the following:

1. Tell haproxy the server is under maintenance.
2. If the instance was the active server, request pgbouncer to reconnect and wait for active sessions to be closed.
3. Stop Postgres, update packages, and restart Postgres.
4. Finally, mark the server as "ready" again to receive requests through haproxy.

PGD logical standby or physical replica instances are updated without any haproxy or pgbouncer interaction. Non-Postgres instances in the cluster are
left alone.

You can control the order in which the cluster's instances are updated by defining the update_hosts variable:

$ tpaexec upgrade ~/clusters/speedy \
 -e update_hosts=quirk,keeper,quaver

This may be useful to minimise lead/shadow switchovers during the update by listing the active PGD primary instances last, so that the shadow servers
are updated first.

If your environment requires additional actions, the postgres-pre-update and postgres-post-update hooks allow you to execute custom Ansible tasks
before and after the package installation step.

M1

For M1 clusters, upgrade will first update the streaming replicas one by one, then perform a switchover from the primary to one of the replicas,
update the primary, and switchover back to it again.

Package version selection

By default, tpaexec upgrade will update to the latest available versions of the installed packages if you did not explicitly specify any package
versions (e.g., Postgres, PGD, or pglogical) when you created the cluster.

If you did select specific versions, for example by using any of the --xxx-package-version options (e.g., postgres, bdr, pglogical) to tpaexec
configure , or by defining xxx_package_version variables in config.yml, the upgrade will do nothing because the installed packages already
satisfy the requested versions.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 80

In this case, you must edit config.yml, remove the version settings, and re-run tpaexec provision . The update will then install the latest available
packages. You can still update to a specific version by specifying versions on the command line as shown below:

$ tpaexec upgrade ~/clusters/speedy -vv \
 -e postgres_package_version="2:11.6r2ndq1.6.13*" \
 -e pglogical_package_version="2:3.6.11*" \
 -e bdr_package_version="2:3.6.11*"

Please note that version syntax here depends on your OS distribution and package manager. In particular, yum accepts *xyz* wildcards, while apt
only understands xyz* (as in the example above).

Note: see limitations of using wildcards in package_version in tpaexec-configure.

It is your responsibility to ensure that the combination of Postgres, PGD, and pglogical package versions that you request are sensible. That is, they
should work together, and there should be an upgrade path from what you have installed to the new versions.

For PGD clusters, it is a good idea to explicitly specify exact versions for all three components (Postgres, PGD, pglogical) rather than rely on the package
manager's dependency resolution to select the correct dependencies.

We strongly recommend testing the upgrade in a QA environment before running it in production.

22 tpaexec switchover

The tpaexec switchover command performs a controlled switchover between a primary and a replica in a cluster that uses streaming replication.
After you run this command, the selected replica is promoted to be the new primary, the former primary becomes a new replica, and any other replicas in
the cluster will be reconfigured to follow the new primary.

The command checks that the cluster is healthy before switching roles, and is designed to be run without having to shut down any repmgr services
beforehand.

(This is equivalent to running repmgr standby switchover with the --siblings-follow option.)

Example

This command will make replicaname be the new primary in ~/clusters/speedy :

Architecture options

This command is applicable only to M1 clusters that have a single writable primary instance and one or more read-only replicas.

For BDR-Always-ON clusters, use the HAProxy server pool management commands to perform maintenance on PGD instances.

$ tpaexec switchover ~/clusters/speedy
replicaname

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 81

23 BDR/HAProxy server pool management

The tpaexec pool-disable-server and pool-enable-server commands allow a PGD instance in a BDR-Always-ON cluster to be
temporarily removed from the HAProxy active server pool for maintenance, and then added back afterwards.

These commands follow the same process as rolling updates by default, so pool-disable-server will wait for active transactions against a PGD
instance to complete and for pgbouncer to direct new connections to another instance before completing. Use the --nowait option if you don't want
to wait for active sessions to end.

Running pool-disable-server immediately followed by pool-enable-server on an instance will have the effect of moving all active traffic
to a different instance (in essence, a switchover). This allows you to run online maintenace tasks such as long-running VACUUM commands, while
maintaining instance availability.

If there are multiple HAProxy servers configured with the same set of haproxy_backend_servers , this command will remove or add the given
server to the pool of every relevant proxy in parallel.

Example

When you remove an instance from the server pool, HAProxy will not direct any traffic to it, even if the other instance(s) in the pool fail. You must
remember to add the server back to the active pool once the maintenance activity is concluded.

24 tpaexec rehydrate

The tpaexec rehydrate command rebuilds AWS EC2 instances with an updated machine image (AMI), and allows for the rapid deployment of
security patches and OS upgrades to a cluster managed by TPA.

Given a new AMI with all the required changes, this command terminates an instance, replaces it with a newly-provisioned instance that uses the new
image, and attaches the data volumes from the old instance before recreating the configuration of the server exactly (based on config.yml).

Publishing up-to-date images and requiring servers to be rebuilt from scratch on a regular schedule is an alternative to allowing a fleet of servers to
download and install individual security updates themselves. It makes it simpler to track the state of each server at a glance, and discourages any
manual changes to individual servers (they would be wiped out during the instance replacement).

TPA makes it simple to minimise disruption to the cluster as a whole during the rehydration, even though the process must necessarily involve downtime
for individual servers as they are terminated and replaced. On a streaming replication cluster, you can rehydrate the replicas first, then use tpaexec
switchover to convert the primary to a replica before rehydrating it. On BDR-Always-ON clusters, you can remove each server from the haproxy
server pool before rehydrating it, then add it back afterwards.

If you just want to install minor-version updates to Postgres and associated components, you can use the tpaexec upgrade command instead.

$ tpaexec pool-disable-server ~/clusters/clockwork orange # --
nowait

HAProxy will no longer direct any traffic to the PGD instance
named
'orange', so you can perform maintenance on it (e.g., run
`tpaexec
rehydrate`).

$ tpaexec pool-enable-server ~/clusters/clockwork
orange

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 82

Prerequisites

To be able to rehydrate an instance, you must specify delete_on_termination: no and attach_existing: yes for each of its data
volumes in config.yml . (The new instance will necessarily have a new EBS root volume.)

By default, when you terminate an EC2 instance, the EBS volumes attached to it are also terminated. In this case, since we want to reattach them to a
new instance, we must disable delete_on_termination . Setting attach_existing makes TPA search for old volumes when provisioning a
new instance and, if found, attach them to the instance after it's running.

Do not stop or terminate the old instance manually; the tpaexec rehydrate command will do this after verifying that the instance can be safely
rehydrated.

Example

Let's assume you have an AWS cluster configuration in ~/clusters/night .

Change the configuration

First, you must edit config.yml and specify the new AMI. For example:

Check that delete_on_termination is disabled for each data volume. If the parameter is not present, you can check its value through the AWS
EC2 management console. Click on 'Instances', select an instance, then open the 'Description' tab and scroll down to 'Block devices', and click on an EBS
volume. If the "Delete on termination" flag is set to true, you can change it using awscli . Also check attach_existing and set it to yes if it isn't
set already.

Here's an example with both attributes correctly set:

(Note that volume parameters may be set in instance_defaults as well as under specific instances. Search for volumes: and make sure all of
the relevant volumes have these two attributes set.)

Start the rehydration

ec2_ami:
 Name: RHEL-8.3_HVM-20210209-x86_64-0-Hourly2-GP2
 Owner: '309956199498'

instances:
- node: 1
 Name: vlad
 subnet: 10.33.14.0/24
 role: primary
 volumes:
 - device_name: /dev/xvdf
 volume_type:
gp2
 volume_size: 16
 attach_existing: yes
 delete_on_termination: false
 vars:
 volume_for: postgres_data
 mountpoint:
/var/lib/pgsql

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 83

Here's the syntax for the rehydrate command:

You can specify a single instance name or a comma-separated list of instance names (but you cannot rehydrate all of the instances in the cluster at
once).

The command will first check that every non-root EBS volume attached to the instance (or instances) being rehydrated has the
delete_on_termination flag set to false. If this is not the case, it will stop with an error before any instance is terminated.

If the volume attributes are set correctly, the command will first terminate each of the instances, then run provision and deploy to replace them with new
instances using the new AMI.

Rehydrate in phases

In order to maintain cluster continuity, we recommend rehydrating the cluster in phases.

For example, in a cluster that uses streaming replication with a primary instance, two replicas, and a Barman backup server, you could rehydrate the
Barman instance and one replica first, then another replica, then switchover from the primary to one of the rehydrated replicas, rehydrate the former
primary, and (optionally), switchover back to the original primary. This sequence ensures that one primary and one replica are always available.

Appendix

Using awscli to change volume attributes

First, find the instance and EBS volume in the AWS management console. Click on 'Instances', select an instance, open the 'Description' tab and scroll
down to 'Block devices', and select an EBS volume. To disable delete_on_termination , run the following command after substituting the correct
values for the --region , --instance-id , and block device name:

Do this for each of the data volumes for the instance, and after a brief delay, you should be able to see the changes in the management console, and
tpaexec rehydrate will also detect that the instance can be safely rehydrated.

25 TPA and Ansible Tower/Ansible Automation Platform

TPA has support for RedHat Ansible Automation Platform (AAP) an automation controller. You run only deploy and upgrade steps on AAP. You run
configuration and provisioning on a standalone machine with the tpa package installed. You can then import the resulting cluster directory on AAP.
Support is limited to bare-metal platforms.

$ tpaexec rehydrate ~/clusters/night
instancename

$ aws ec2 modify-instance-attribute
\
 --region eu-west-1 --instance-id i-XXXXXXXXXXXXXXXXX
\
 --block-device-mappings \
 '[{"DeviceName": "/dev/xvdf", "Ebs": {"DeleteOnTermination":
false}}]'

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 84

AAP initial setup

Before TPA can use AAP to deploy clusters, you need to perform this initial setup.

Add TPA Execution Environment image (admin)

Starting with version 2.4, AAP uses container images to run Ansible playbooks. These containers, called Execution Environments (EE), bundle
dependencies required by playbooks to run successfully.

Note

EDB customers can reach out to EDB Support for help with EE.

As an AAP admin, create an entry in your available EE list that points to your EE image.

Create the EDB_SUBSCRIPTION_TOKEN credential type (admin)

As an AAP admin, create the custom credential type EDB_SUBSCRIPTION_TOKEN to hold your EDB subscription access token:

1. Go to the Credentials Type page in the AAP UI.

2. Set the Name field to EDB_SUBSCRIPTION_TOKEN .

3. Paste the following into the Input Configuration field:

4. Paste the following into the Injector Configuration field:

5. Save the changes.

6. Create a credential using the newly added type EDB_SUBSCRIPTION_TOKEN .

Setting up a cluster

Perform the initial steps on a workstation with the tpaexec package installed.

On the TPA workstation

fields:
- id: tpa_edb_sub_token
 type:
string
 label: EDB_SUBSCRIPTION_TOKEN
 secret: true
required:
- tpa_edb_sub_token

env:
 EDB_SUBSCRIPTION_TOKEN: '{{ tpa_edb_sub_token
}}'

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 85

Configure

Run the tpaexec configure command, including these options: --platform bare , --use-ansible-tower , --tower-git-
repository

--use-ansible-tower expects the AAP address as a parameter even if it isn't used at the time. --tower-git-repository is used to import
the cluster data into AAP. TPA creates its own branch using cluster_name as the branch name, which allows you to use the same repository for all of
your clusters. All other options to tpaexec configure , as described in Configuration, are still valid.

config.yml modification

config.yml includes the top-level dictionary ansible_tower , which causes tpaexec provision to treat the cluster as an AAP-enabled
cluster.

Edit config.yml to ensure that ansible_host and {private,public}_ip are defined for each node and ansible_host is set to a value
that AAP can resolve. Make any change or addition needed. See Cluster configuration.

To generate inventory and other related files, run tpaexec provision .

On the AAP UI

Project

Add a project in AAP using the git repository as the source. Set the default EE to use the image provided by TPA.

Project options

To ensure changes are correctly synced before running a job, we strongly recommend using Update Revision on Launch.

Allow Branch Override is required when trying to use multiple inventories with a single project.

Inventory

Add an empty inventory. Use the project as an external source to populate it using inventory/00-cluster_name as the inventory file.

Inventory options

To ensure changes are correctly synced, We strongly recommend using Overwrite local groups and hosts from remote inventory source.

We also recommend using Overwrite local variables from remote inventory source when not setting additional variables outside TPA's control
in AAP.

[tpa]$ tpaexec configure <clustername> \
 --platform bare \
 --use-ansible-tower https://aac.example.com \
 --tower-git-repository ssh://git@git.example.com/example \
 --hostnames-from <hostnamefile> \
 --architecture PGD-Always-ON \
 --pgd-proxy-routing local \
 --postgresql 16

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 86

Credentials

Create a vault credential. You can retrieve the vault password using tpaexec show-vault <cluster_dir> on the TPA workstation.

To connect to your inventory nodes by way of SSH during deployment, make sure the machine credential is available in AAP.

Template creation

To create a template:

1. Create a template that uses your project and your inventory.

2. Include these required credentials:

Vault credential
EDB_SUBSCRIPTION_TOKEN credential

Machine credential

3. Set two additional variables:

tpa_dir: /opt/EDB/TPA
cluster_dir: /runner/project

4. Select deploy.yml as the playbook.

5. To deploy your cluster, run a job based on the new template.

Use one project for multiple inventory

TPA uses a different branch name for each of your clusters in the associated git repository. This approach allows the use of a single project for multiple
clusters.

Set Allow branch override option

In the AAP project, enable the Allow branch override option.

Define multiple inventories

TPA uses a different branch name for each of your clusters in the git repository. You can generate multiple inventories using the same project as the
source by overriding the branch for each inventory.

Define credentials per inventory

Ensure vault passwords are set accordingly per inventory since these differ on each TPA cluster.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 87

Update TPA on AAP

Updating TPA on AAP involves some extra steps.

Update TPA workstation package

Update your TPA workstation package as any OS package depending on your OS. See Installation.

Use EE image with same version tag

Modify the EE image in AAP to use the same version tag as the workstation package version used.

Run tpaexec relink on your cluster directory

Ensure that any cluster using AAP is up to date by running tpaexec relink <cluster_dir> . Be sure to push any change committed by the
relink command:

$ git status
On branch cluster_name
Your branch is ahead of 'tower/cluster_name' by 1 commit.
 (use "git push" to publish your local commits)
...
$ git push tower

Sync project and inventories

If they aren't set to use Update revision on job launch and Update on launch, sync the project in the AAP UI and related inventories, respectively.

26 TPA, Ansible, and sudo

TPA uses Ansible with sudo to execute tasks with elevated privileges on target instances. It's important to understand how Ansible uses sudo (which isn't
specific to TPA) and the consequences to systems managed with TPA.

TPA needs root privileges;

To install packages (required packages using the operating system's native package manager and optional packages using pip)
To stop, reload, and restart services (that is, Postgres, repmgr, efm, etcd, haproxy, pgbouncer, and so on)
To perform a variety of other tasks (such as gathering cluster facts, performing switchover, and setting up cluster nodes)

TPA also must be able to use sudo. You can make it ssh in as root directly by setting ansible_user: root , but it still uses sudo to execute tasks as
other users (for example, postgres).

Ansible sudo invocations

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 88

When Ansible runs a task using sudo, you see a process on the target instance that looks something like this:

/bin/bash -c 'sudo -H -S -n -u root /bin/bash -c \
 '"'"'echo BECOME-SUCCESS-kfoodiiprztsyerriqbjuqhhbemejgpc ; \
 /usr/bin/python2'"'"' && sleep 0'

Users who were expecting something like sudo yum install -y xyzpkg are often surprised by this. By and large, most tasks in Ansible invoke a
Python interpreter to execute Python code rather than executing recognizable shell commands. (Playbooks can execute raw shell commands, but TPA
uses such tasks only to bootstrap a Python interpreter.)

Ansible modules contain Python code of varying complexity, and an Ansible playbook isn't just a shell script written in YAML format. There's no way to
“extract” shell commands that do the same thing as executing an arbitrary Ansible playbook.

One significant consequence of how Ansible uses sudo is that privilege escalation must be general. It isn't possible to limit sudo invocations to specific
commands in sudoers.conf , as some administrators are used to doing. Most tasks just invoke Python. You could have restricted sudo access to
Python if it weren't for the random string in every command. However, once Python is running as root, there's no effective limit on what it can do anyway.

Executing Python modules on target hosts is how Ansible works. None of this is specific to TPA, and these considerations apply equally to any other
Ansible playbook.

Recommendations

Use SSH public-key-based authentication to access target instances.

Allow the SSH user to execute sudo commands without a password.

Restrict access by time rather than by command.

TPA needs access only when you're first setting up your cluster or running tpaexec deploy again to make configuration changes, for example,
during a maintenance window. Until then, you can disable its access entirely, which is a one-line change for both ssh and sudo.

During deployment, everything Ansible does is generally predictable based on what the playbooks are doing and the parameters you provide. Each action
is visible in the system logs on the target instances as well as in the Ansible log on the machine where tpaexec runs.

Ansible's focus is less to impose fine-grained restrictions on the actions you can execute and more to provide visibility into what it does as it executes.
Thus elevated privileges are better assigned and managed by time rather than by scope.

SSH and sudo passwords

We strongly recommend setting up passwordless SSH key authentication and passwordless sudo access. However, it's possible to use passwords too.

If you set ANSIBLE_ASK_PASS=yes and ANSIBLE_BECOME_ASK_PASS=yes in your environment before running tpaexec, Ansible prompts you
to enter a login password and a sudo password for the remote servers. It then negotiates the login/sudo password prompt on the remote server and
sends the password you specify, which makes your playbooks take noticeably longer to run.

We don't recommend this mode of operation because it's a more effective security control to completely disable access through a particular account
when not needed than to use a combination of passwords to restrict access. Using public key authentication for ssh provides an effective control over
who can access the server, and it's easier to protect a single private key per authorized user than it is to protect a shared password or multiple shared
passwords. Also, if you limit access at the ssh/sudo level to when it's required, the passwords don't add any extra security during your maintenance
window.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 89

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_privilege_escalation.html#privilege-escalation-must-be-general

sudo options

To use Ansible with sudo, don't set requiretty in sudoers.conf .

If needed, you can change the sudo options that Ansible uses (-H -S -n) by setting either:

become_flags in the [privilege_escalation] section of ansible.cfg
ANSIBLE_BECOME_FLAGS in the environment
ansible_become_flags in the inventory

All three methods are equivalent, but change the sudo options only if there's a specific need to do so. The defaults were chosen for good reasons. For
example, removing -S -n will cause tasks to time out if passwordless sudo is incorrectly configured.

Logging

For playbook executions, the sudo logs show mostly invocations of Python, just as it shows only an invocation of bash when sudo -i is used.

For more detail, the syslog shows the exact arguments to each module invocation on the target instance. For a higher-level view of why that module was
invoked, the ansible.log on the controller shows what that task was trying to do, and the result.

If you want even more detail or an independent source of audit data, you can run auditd on the server and use the SELinux log files. You can get still
more fine-grained syscall-level information from bpftrace/bcc. (For example, opensnoop shows every file opened on the system, and execsnoop shows
every process executed on the system.) You can do any or all of these things, depending on your needs, with the obvious caveat of increasing overhead
with increased logging.

Local privileges

The installation instructions for TPA mention sudo only as shorthand for “run these commands as root somehow.” Once TPA is installed and you've run
tpaexec setup , TPA doesn't require elevated privileges on the local machine. (But if you use Docker, you must run tpaexec as a user that belongs to

a Unix group that has permission to connect to the Docker daemon.)

27 TPA - PuTTY configuration guide

You can use PuTTY under Windows to connect by way of SSH to the AWS instances that were created by the TPA utility tpaexec provision. You need to
convert the keys from the private key format generated by Amazon EC2 (.pem) to the PuTTY format (.ppk).

Provision the cluster
[tpa]$ tpaexec provision <clustername>

PuTTY has a tool named PuTTYgen that can convert keys to the required format.

Key conversion

Follow these steps to perform the key conversion.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 90

Locate private key

Locate the private key in the cluster directory <clustername> . The name uses the cluster_name variable, which is set in config.yml ,
prefixed by id_ . For example, if cluster_name is set to testenv1 , then the private key is id_testenv1 .

Save key as .pem

Copy the private key file into your Windows file system and save it as a .pem file. Using the same example, the file name is id_testenv1.pem . To
create the file, it's okay to paste the content into a text file.

Key conversions

1. Start PuTTYgen. Under Parameters, select the appropriate type of key to generate:

For older versions of PuTTYgen, select SSH-2 RSA.
For recent versions, select RSA.

Note

Don't select SSH-1 (RSA).

2. Select Load. In the box labeled PuTTY Private Key Files (*.ppk) , select All Files (*.*).

3. Select your .pem file and select Open. Then select OK.

4. Select Save private key, and select Yes to ignore the warning about saving the key without a passphrase. Make sure that the file suffix is .ppk ,
and select the same name as you did for the .pem file. Using the same example, the filename is id_testenv1.ppk .

Configure PuTTY

1. Start PuTTY. In the Category window, select Session.

2. In the Host Name panel, enter <user>@<IP address> . In the Port panel, enter 22 .

You can find the <user> and <IP address> values in the <clustername>/ssh_config file that's created by the tpaexec provision
utility.

3. In the PuTTY Category window, select Connection. Expand SSH and select Auth.

4. For the panel labeled Private key file for authentication, select Browse. Select the .ppk file that you saved earlier, and then select Open.

5. In the PuTTY Category** window, select Session. In Saved Sessions, enter a session name and select **Save**.

You can now connect to the AWS host by way of PuTTY by selecting this saved session.

28 Troubleshooting

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 91

Re-create Python virtual environment

Occasionally the Python venv can get in an inconsistent state. In this case, the easiest solution is to delete the environment and create it again.
Symptoms of a broken venv can include errors during provisioning like:

TASK [Write Vagrantfile and firstboot.sh]

failed: [localhost] (item=Vagrantfile) => {"changed": false, "checksum":
"bf1403a17d897b68fa8137784d298d4da36fb7f9", "item": "Vagrantfile", "msg": "Aborting, target uses selinux
but python bindings (libselinux-python) aren't installed!"}

With tpaexec installed in the default location, to create a virtual environment, run:

[tpa]$ sudo rm -rf /opt/EDB/TPA/tpa-venv
[tpa]$ sudo /opt/EDB/TPA/bin/tpaexec setup

Strange AWS errors regarding credentials

If the time and date of the TPA server isn't correct, during provisioning, you can get AWS errors similar to this:

TASK [Register key tpa_cluster in each region] **
An exception occurred during task execution. To see the full traceback, use -vvv. The error was:
ClientError: An error occurred (AuthFailure) when calling the DescribeKeyPairs operation: AWS was not
able to validate the provided access credentials
failed: [localhost] (item=eu-central-1) => {"boto3_version": "1.8.8", "botocore_version": "1.11.8",
"changed": false, "error": {"code": "AuthFailure", "message": "AWS was not able to validate the provided
access credentials"}, "item": "eu-central-1", "msg": "error finding keypair: An error occurred
(AuthFailure) when calling the DescribeKeyPairs operation: AWS was not able to validate the provided
access credentials", "response_metadata": {"http_headers": {"date": "Thu, 27 Sep 2018 12:49:41 GMT",
"server": "AmazonEC2", "transfer-encoding": "chunked"}, "http_status_code": 401, "request_id": "a0d905ba-
188f-48fe-8e5a-c8d8799e3232", "retry_attempts": 0}}

Solution: Set the time and date correctly.

[tpa]$ sudo ntpdate pool.ntp.org

Logging

By default, all tpaexec logging is saved in the log file <clusterdir>/ansible.log .

To change the log file location, set the environment variable ANSIBLE_LOG_PATH to the desired location. For example:

export ANSIBLE_LOG_PATH=~/ansible.log

To increase the verbosity of logging, add -v / -vv / -vvv / -vvvv / -vvvvv to the tpaexec command line:

[tpa]$ tpaexec deploy <clustername> -v

-v shows the results of modules

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 92

-vv shows the files from which tasks come
-vvv shows what commands are being executed on the target machines
-vvvv enables connection debugging, what callbacks have been loaded
-vvvvv shows some additional ssh configuration, filepath information

Cluster test

An easy way to smoke test an existing cluster is to run:

[tpa]$ tpaexec test <clustername>

This command does a functional test of the cluster components, followed by a performance test of the cluster using pgbench. As pgbench can take a
while to complete, you can omit benchmarking by running:

[tpa]$ tpaexec test <clustername> --excluded_tasks pgbench

TPA server test

To check the installation of the TPA server, run:

[tpa]$ tpaexec selftest

Including or excluding specific tasks

When re-running a tpaexec provision or deploy after a failure or when running tests, it can sometimes be useful to miss out tasks using TPA's task
selection mechanism.

29 Running TPA in a Docker container

If you're using a system for which there are no TPA packages available, and it's difficult to run TPA after installing from source (for example, because it's
not easy to obtain a working Python 3.9+ interpreter), your last resort might be to build a Docker image and run TPA inside a Docker container.

You don't need to run TPA in a Docker container to deploy to Docker containers. It's always preferable to run TPA directly if you can, even on MacOS X.

Quick start

Make sure you have Docker installed and working on your system.

To clone the tpaexec source repository from Github and build a new Docker image named tpa/tpaexec , run the following commands:

$ git clone
ssh://git@github.com/EnterpriseDB/tpa.git
$ cd
tpa

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 93

Double-check the created image:

Create a TPA container and make your cluster configuration directories available inside the container:

You can now run commands like tpaexec provision /clusters/speedy at the container prompt. (When you exit the shell, the container is
removed.)

If you want to provision Docker containers using TPA, you must also allow the container to access the Docker control socket on the host:

$ docker run --platform=linux/amd64 --rm -v ~/clusters:/clusters \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -it tpa/tpaexec:latest

Run docker ps in the container to make sure that your connection to the host Docker daemon is working.

Installing Docker

See the Docker documentation if you need help installing Docker and getting started with it.

On MacOS X, you can install Docker Desktop for Mac and launch Docker from the application menu.

29.1 Managing clusters in a disconnected or air-gapped environment

In a security-controlled environment where no direct connection to the Internet is allowed, you must provide all packages needed by TPA to complete
the deployment on each node of the cluster. You can supply those packages using whatever method you choose, for example, by way of shared network
repos or local repos preconfigured on each node.

You can alternatively use the local-repo approach that TPA provides, as described in Creating and using a local repository. If you use this approach, you
still need to make sure that TPA's local repo has all the required packages needed during the deployment of each node.

$ docker build -t tpa/tpaexec
.

$ docker image ls
tpa/tpaexec
REPOSITORY TAG IMAGE ID CREATED
SIZE
tpa/tpaexec latest e145cf8276fb 8 seconds ago
1.73GB
$ docker run --platform=linux/amd64 --rm tpa/tpaexec tpaexec
info
TPAexec v20.11-59-g85a62fe3 (branch:
master)
tpaexec=/usr/local/bin/tpaexec
TPA_DIR=/opt/EDB/TPA
PYTHON=/opt/EDB/TPA/tpa-venv/bin/python3 (v3.7.3, venv)
TPA_VENV=/opt/EDB/TPA/tpa-venv
ANSIBLE=/opt/EDB/TPA/tpa-venv/bin/ansible (v2.8.15)

$ docker run --platform=linux/amd64 --rm -v ~/clusters:/clusters
\
 -it tpa/tpaexec:latest

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 94

https://docs.docker.com/
https://docs.docker.com/install
https://docs.docker.com/get-started/
https://hub.docker.com/editions/community/docker-ce-desktop-mac/

To help with this requirement when using the local-repo approach, TPA provides the download-packages command. This command can populate a
local repository created using the local-repo approach. Use this command to ensure that you download all the required packages needed for the
deployment to succeed.

Preparation

Choose an internet-connected machine where you can install TPA. Follow these instructions to either copy an existing cluster configuration or create a
new cluster.

Note

If TPA isn't already installed on the air-gapped server, follow these instructions to install it.

If you have an existing cluster in a disconnected environment, all you need on the internet-connected host is the config.yml file. Create a directory
and copy that file into it. Then run tpaexec relink on that directory to generate the remaining files that are normally created by tpaexec
configure .

Alternatively, to create a new configuration for an environment where the target instances doesn't have network access, configure a new cluster using
this option:

 tpaexec configure --use-local-repo-only …

This command does everything that --enable-local-repo does and disables the configuration for all other package repositories. On RedHat
instances, it also disables access to subscription-based services.

In an existing cluster, you can set use_local_repo_only: yes in config.yml :

You don't need separate cluster configurations for internet-connected and disconnected environments. The options that follow work in both.

See Creating and using a local repository for more information.

Downloading packages

On the internet-connected machine with docker installed, run:

tpaexec download-packages cluster-dir --os <OS> --os-version <version>

See the detailed description for the package downloader.

Copying packages to the target environment

The resulting repository is in the cluster-dir/local-repo directory. This is a complete package repo for the target OS. Copy this directory from
the connected controller to the disconnected controller that will be used to deploy the cluster. Place the directory in the same place, beneath the cluster
directory. TPA then copies packages to the instances when you run deploy .

cluster_vars:
 use_local_repo_only: yes

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 95

Deploying in a disconnected environment

Make sure that the cluster config.yml is configured as described in Preparation. Run tpaexec provision and deploy as you do normally.

Updating in a disconnected environment

You can use the upgrade command to perform updates in an air-gapped environment. Before running this command, you must run download-
packages on the connected controller and copy the updated repository to the disconnected controller.

29.2 Distribution support

TPA detects and adapts to the distribution running on each target instance. Listed here are the platforms that are actively supported and legacy
distributions that were previously supported.

Deploying to a legacy platform is likely to work as long as you have access to the necessary packages. However, this isn't a supported use of TPA and
isn't suitable for production use.

Fully supported platforms are supported both as host systems for running TPA and target systems on which TPA deploys the Postgres cluster.

Debian x86

Debian 11/bullseye is fully supported.
Debian 10/buster is fully supported.
Debian 9/stretch is a legacy distribution.
Debian 8/jessie is a legacy distribution.

Ubuntu x86

Ubuntu 22.04/jammy is fully supported.
Ubuntu 20.04/focal is fully supported.
Ubuntu 18.04/bionic is a legacy distribution.
Ubuntu 16.04/xenial is a legacy distribution.

Oracle Linux

Oracle Linux 9.x is fully supported (Docker only).
Oracle Linux 8.x is fully supported (Docker only).
Oracle Linux 7.x is fully supported (Docker only).

RedHat x86

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 96

RHEL/Rocky/AlmaLinux/Oracle Linux 9.x is fully supported (Python 3 only).
RHEL/CentOS/Rocky/AlmaLinux 8.x is fully supported (Python 3 only).
RHEL/CentOS 7.x is fully supported (Python 2 only).

SLES

SLES 15.x is fully supported.

Platform-specific considerations

Some platforms might not work with the legacy distributions mentioned here. For example, Debian 8 and Ubuntu 16.04 aren't available in Docker
containers.

29.3 TPA capabilities and supported software

Python requirements
Supported distributions

Supported software

TPA can install and configure the following major components.

Postgres 16, 15, 14, 13, 12, 11

EPAS (EDB Postgres Advanced Server) 16, 15, 14, 13, 12

PGD 5, 4, 3.7

pglogical 3, 2 (open source)

pgd-cli and pgd-proxy

HARP 2

repmgr

Barman

pgbouncer

haproxy (supported only for PGD 3.7)

Failover Manager (EFM)

Postgres Enterprise Manager (PEM)

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 97

29.4 Reconciling changes made outside of TPA

Any changes made to a TPA created cluster that are not performed by changing the TPA configuration will not be saved in config.yml . This means
that your cluster will have changes that the TPA configuration won't be able to recreate.

This page shows how configuration is managed with TPA and the preferred ways to make configuration changes. We then look at strategies to make,
and reconcile, the results of making manual changes to the cluster.

Why might I need to make manual configuration changes?

The most common scenario in which you may need to make configuration changes outside of TPA is if the operation you are performing is not supported
by TPA. The two most common such operations are destructive changes, such as removing a node, and upgrading the major version of Postgres.

Destructive changes

In general TPA will not remove previously deployed elements of a cluster, even if these are removed from config.yml . This sometimes surprises
people because a strictly declarative system should always mutate the deployed artifacts to match the declaration. However, making destructive
changes to production database can have serious consequences so it is something we have chosen not to support.

Major-version Postgres upgrades

TPA does not yet provide an automated mechanism for performing major version upgrades of Postgres. Therefore if you need to perform an in-place
upgrade on an existing cluster this must be performed using other tools such as pg_upgrade or bdr_pg_upgrade.

What can happen if changes are not reconciled?

A general issue with unreconciled changes is that if you deploy a new cluster using your existing config.yml , or provide your config.yml to EDB
Support in order to reproduce a problem, it will not match the original cluster. In addition, there is potential for operational problems should you wish to
use TPA to manage that cluster in future.

The operational impact of unreconciled changes varies depending on the nature of the changes. In particular whether the change is destructive, and
whether the change blocks TPA from running by causing an error or invalidating the data in config.yml .

Non-destructive, non-blocking changes

Additive changes are often accommodated with no immediate operational issues. Consider manually adding a user. The new user will continue to exist
and cause no issues with TPA at all. You may prefer to manage the user through TPA in which case you can declare it in config.yml but the existence
of a manually-added user will cause no operational issues.

Some manual additions can have more nuanced effects. Take the example of an extension which has been manually added. Because TPA does not make
destructive changes, the extension will not be removed when tpaexec deploy is next run. However, if you made any changes to the Postgres
configuration to accommodate the new extension these may be overwritten if you did not make them using one of TPA's supported mechanisms (see
below).

Furthermore, TPA will not make any attempt to modify the config.yml file to reflect manual changes and the new extension will be omitted from

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 98

https://www.enterprisedb.com/docs/pgd/latest/upgrades/bdr_pg_upgrade/#bdr_pg_upgrade-command-line

tpaexec upgrade which could lead to incompatible software versions existing on the cluster.

Destructive, non-blocking changes

Destructive changes that are easily detected and do not block TPA's operation will simply be undone when tpaexec deploy is next run. Consider
manually removing an extension. From the perspective of TPA, this situation is indistinguishable from the user adding an extension to the
config.yml file and running deploy. As such, TPA will add the extension such that the cluster and the config.yml are reconciled, albeit in the

opposite way to that the user intended.

Similarly, changes made manually to configuration parameters will be undone unless they are:

1. Made in the conf.d/9999-override.conf file reserved for manual edits;
2. Made using ALTER SYSTEM SQL; or
3. Made natively in TPA by adding postgres_conf_settings .

Other than the fact that option 3 is self-documenting and portable, there is no pressing operational reason to reconcile changes made by method 1 or 2.

Destructive, blocking changes

Changes which create a more fundamental mismatch between config.yml can block TPA from performing operations. For example if you physically
remove a node in a bare metal cluster, attempts by TPA to connect to that node will fail, meaning most TPA operations will exit with an error and you will
be unable to manage the cluster with TPA until you reconcile this difference.

How to reconcile configuration changes

In general, the reconciliation process involves modifying config.yml such that it describes the current state of the cluster and then running
tpaexec deploy .

Example: parting a PGD node

Deploy a minimal PGD cluster using the bare architecture and a configure command such as:

Part a node using this SQL, which can be executed from any node:

select * from bdr.part_node('node-2');

Rerun deploy . Note that, whilst no errors occur, the node is still parted. This can be verified using the command pgd show-nodes on any of the
nodes. This is because TPA will not overwrite the metadata which tells PGD the node is parted.

Note

tpaexec configure mycluster \
-a PGD-Always-ON \
--platform bare \
--edbpge 15 \
--location-names a
\
--pgd-proxy-routing local

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 99

It is not possible to reconcile the config.yml with this cluster state because TPA, and indeed PGD itself, has no mechanism to initiate a
node in the 'parted' state. In principle you could continue to use TPA to continue this parted cluster, but this is not advisable. In most cases you
will wish to continue to fully remove the node and reconcile config.yaml .

Example: removing a PGD node completely

The previous example parted a node from the PGD cluster, but left the node itself intact and still managed by TPA in a viable but unreconcilable state.

To completely decommission the node, it is safe to simply turn off the server corresponding to node-2 . If you attempt to run deploy at this stage, it
will fail early when it cannot reach the server.

To reconcile this change in config.yml simply delete the entry under instances corresponding to node-2 . It will look something like this:

You can now manage this node as usual using TPA. The original cluster still has metadata that refers to node-2 as a node whose state is PARTED ,
which is not removed by default as it does not affect cluster functionality.

Note

If you wish to join the original node-2 back to the cluster after having removed it from config.yml , you can do so by restoring the
deleted lines of config.yml , stopping Postgres, deleting the PGDATA directory on that node, and then repeating tpaexec deploy .
As noted above, TPA will not remove an existing database, even if the corresponding entry is deleted from config.yml , so you need to
perform this action manually.

Example: changing the superuser password

TPA automatically generates a password for the superuser which you may view using tpaexec show-password <cluster> <superuser-
name> . If you change the password manually (for example using the /password command in psql) you will find that after tpaexec deploy is
next run, the password has reverted to the one set by TPA. To make the change through TPA, and therefore make it persist across runs of tpaexec
deploy , you must use the command tpaexec store-password <cluster> <superuser-name> to specify the password, then run
tpaexec deploy . This also applies to any other user created through TPA.

Example: adding or removing an extension

A simple single-node cluster can be deployed with the following config.yml .

- Name: node-2
 public_ip: 44.201.93.236
 private_ip: 172.31.71.186
 location:
a
 node: 2
 role:
 -
bdr
 - pgd-proxy
 vars:
 bdr_child_group: a_subgroup
 bdr_node_options:
 route_priority: 100

architecture: M1

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 100

You may manually add the pgvector extension by connecting to the node and running apt install postgresql-15-pgvector then executing
the following SQL command: CREATE EXTENSION vector; . This will not cause any operational issues, beyond the fact that config.yml no
longer describes the cluster as fully as it did previously. However, it is advisable to reconcile config.yml (or indeed simply use TPA to add the
extension in the first place) by adding the following cluster variables.

After adding this configuration, you may manually remove the extension by executing the SQL command DROP EXTENSION vector; and then apt
remove postgresql-15-pgvector . However if you run tpaexec deploy again without reconciling config.yml , the extension will be
reinstalled. To reconcile config.yml , simply remove the lines added previously.

Note

As noted previously, TPA will not honour destructive changes. So simply removing the lines from config.yml will not remove the
extension. It is necessary to perform this operation manually then reconcile the change.

29.5 EDB Postgres Distributed configuration

TPA can install and configure EDB Postgres Distributed (PGD), formerly known as BDR (Bi-directional replication) versions 3.7, 4.x, and 5.x.

Access to PGD packages is through EDB's package repositories only. You must have a valid EDB subscription token to download the packages.

This documentation touches on several aspects of PGD configuration, but for an authoritative description of the details, see the PGD documentation.

How TPA approaches PGD installation

cluster_name: singlenode

cluster_vars:
 postgres_flavour: postgresql
 postgres_version: '15'
 preferred_python_version: python3
 tpa_2q_repositories: []

instance_defaults:
 image: tpa/debian:11
 platform:
docker
 vars:
 ansible_user: root

instances:
- Name: nodeone
 node: 1
 role:
 - primary

cluster_vars:
 ...
 extra_postgres_packages:
 common:
 - postgresql-15-
pgvector
 extra_postgres_extensions:
 -
vector

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 101

https://enterprisedb.com/docs/pgd/latest/

TPA installs PGD and any dependencies on all PGD instances. It also installs Postgres.

After completing the basic Postgres setup and starting Postgres, TPA then creates bdr_database and proceeds to set up a PGD cluster using the
steps that follow.

Installation

TPA installs the correct PGD packages based on the version and flavor of Postgres in use (for example, Postgres, Postgres Extended, or EDB Postgres
Advanced Server).

Set bdr_version to determine the major version of PGD to install (that is, 3, 4, or 5). Set bdr_package_version to determine the package to
install. For example, use 5.0* to install the latest 5.0.x package.

Overview of cluster setup

After installing the required packages, configuring Postgres to load PGD, and starting the server, TPA sets up PGD nodes, groups, replication sets, and
other resources.

Here's a summary of the steps TPA performs:

Create a PGD node (using bdr.create_node()) for each participating instance.

Create one or more PGD node groups (using bdr.create_node_group()) based on bdr_node_groups .

Create replication sets, if required, to control the changes that are replicated. This decision is based on node group type and memberships. For
example, subscriber-only and witness nodes might need special handling.

Join the relevant node groups on the individual instances.

Perform additional configuration, such as enabling subgroup RAFT or proxy routing.

This process involves executing a complex sequence of queries, some on each instance in turn and others in parallel. To make the steps easier to follow,
TPA designates an arbitrary PGD primary instance as the first_bdr_primary for the cluster and uses this instance to execute most of these
queries. The instance is otherwise not special, and its identity isn't significant to the PGD configuration.

Instance roles

Every instance with bdr in its role is a PGD instance and implicitly also a postgres server instance.

A PGD instance with readonly in its role is a logical standby node (which joins the PGD node group with pause_in_standby set), eligible for
promotion.

A PGD instance with subscriber-only in its role is a subscriber-only node, which receives replicated changes but doesn't publish them.

A PGD instance with witness in its role is a witness node.

Each of these PGD instances is implicitly also a primary instance. The exception is an instance with replica in its role. That setting indicates a
physical streaming replica of an upstream PGD instance. Such instances aren't included in any recommended PGD architecture and aren't currently

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 102

supported by TPA.

Configuration settings

The settings that follow are ordinarily set in cluster_vars so that they're set uniformly for all the PGD instances in the cluster. You can set different
values on different instances in some cases, for example, bdr_database . In other cases, though, the result is undefined. For example, all instances
must have exactly the same value of bdr_node_groups .

We strongly recommend defining your PGD configuration by setting uniform values for the whole cluster under cluster_vars .

bdr_database

The bdr_database (default: bdrdb) is initialized with PGD.

bdr_node_group

The setting of bdr_node_group (default: based on the cluster name) identifies the PGD cluster for an instance to be a part of. It's also used to
identify a particular cluster for external components, such as pgd-proxy or harp-proxy.

bdr_node_groups

This setting is a list of PGD node groups that must be created before the group-join stage (if the cluster requires additional subgroups).

In general, tpaexec configure generates an appropriate value based on the selected architecture.

The first entry must be for the cluster's bdr_node_group .

Each subsequent entry in the list must specify a parent_group_name and can optionally specify the node_group_type optional.

Each entry can also have an optional key/value mapping of group options. The available options vary by PGD version.

bdr_child_group

If bdr_child_group is set for an instance (to the name of a group that is mentioned in bdr_node_groups), it joins that group instead of

cluster_vars:
 bdr_node_groups:
 - name:
topgroup
 - name: abc_subgroup
 node_group_type: data
 parent_group_name:
topgroup
 options:
 location:
abc

…

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 103

bdr_node_group .

bdr_commit_scopes

This setting is an optional list of commit scopes that must exist in the PGD database (available for PGD 4.1 and later).

Each entry must specify a name value for the commit scope, the name of the origin group, and a commit scope rule value. The groups must
correspond to entries in bdr_node_groups .

If you set bdr_commit_scopes explicitly, TPA creates, alters, or drops commit scopes as needed to ensure that the database matches the
configuration. If you don't set it, TPA leaves existing commit scopes alone.

Miscellaneous notes

Hooks

TPA invokes the bdr-node-pre-creation , bdr-post-group-creation , and bdr-pre-group-join hooks during the PGD cluster setup
process.

Database collations

TPA checks that the PGD database on every instance in a cluster has the same collation (LC_COLLATE) setting. Having different collations in
databases in the same PGD cluster risks data loss.

Older versions of PGD

TPA no longer actively supports or tests the deployment of BDR v1 (with a patched version of Postgres 9.4), v2 (with Postgres 9.6), or any PGD versions
before v3.7.

29.6 Barman

cluster_vars:
 bdr_commit_scopes:
 - name: somescope
 origin: somegroup
 rule: 'ALL (somegroup) ON received …
`
 - name:
otherscope
 origin: othergroup
 rule:
'…'

…

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 104

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/

When an instance has the barman role in config.yml , TPA configures the instance as a Barman server to take backups of any other instances that
name it in their backup setting.

Multiple postgres instances can have the same Barman server named as their backup . Any postgres instance can have a list of Barman servers
named as its backup . In this case, backups are taken to all of the named servers.

The default Barman configuration connects to PostgreSQL using pg_receivewal to take continuous backups of WAL. It takes a full backup of the
instance using rsync over ssh twice weekly. Full backups and WAL are retained for long enough to enable recovery to any point in the previous 4 weeks.

Barman configuration

On each Barman server, a global configuration file is created as /etc/barman.conf . This file contains default values for many Barman
configuration variables. For each Postgres server being backed up, an additional Barman configuration file is created. For example, to back up the server
one , the file is /etc/barman.d/one.conf , and the backups are stored in /var/lib/barman/one . The file and directory names are taken

from the backed-up instance's backup_name setting. The default for this setting is the instance name.

You can set the following variables on the backed-up instance. They are passed through into Barman's configuration with the prefix barman_ removed.

Variable Default

barman_archiver false

barman_log_file /var/log/barman.log

barman_backup_method rsync

barman_compression pigz

barman_reuse_backup link

barman_parallel_jobs 1

barman_backup_options concurrent_backup

barman_immediate_checkpoint false

barman_network_compression false

barman_basebackup_retry_times 3

barman_basebackup_retry_sleep 30

barman_minimum_redundancy 3

barman_retention_policy RECOVERY WINDOW OF 4 WEEKS

barman_last_backup_maximum_age 1 WEEK

barman_pre_archive_retry_script

barman_post_backup_retry_script

instances:
- Name:
one
 backup:
two

…

- Name:
two
 role:
 -
barman

…

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 105

https://pgbarman.org/

barman_post_backup_script

barman_streaming_wals_directory

Variable Default

Backup scheduling

TPA installs a cron job in /etc/cron.d/barman that runs every minute and invokes barman cron to perform maintenance tasks.

For each instance being backed up, TPA installs another cron job in /etc/cron.d/<backup_name> that takes the backups of that instance. This
job runs as determined by the barman_backup_interval variable for the instance. The default is to take backups at 04:00 every Wednesday and
Saturday.

SSH keys

TPA generates ssh key pairs for the postgres and barman users and installs them into the respective ~/.ssh directories. Keys for the postgres user are
added to the barman authorized_keys file, and keys for the barman user are added to the postgres authorized_keys file. The postgres user
must be able to ssh to the Barman server to archive WAL segments (if configured), and the barman user must be able to ssh to the Postgres instance to
take or restore backups.

29.7 Configuring EFM

TPA installs and configures EFM when failover_manager is set to efm .

You need a valid subscription to EDB's package repositories to obtain EFM packages.

EFM configuration

TPA generates efm.nodes and efm.properties with the appropriate instance-specific settings or default values. TPA also installs an
efm.notification.sh script, which does nothing by default. You can fill it in however you want.

See the EFM documentation for more details on configuring EFM.

efm_conf_settings

You can use efm_conf_settings to set any parameters, whether or not TPA recognizes them. Where needed, you need to quote the value exactly
as you would if you were editing efm.properties manually:

cluster_vars:
 efm_conf_settings:
 standby.restart.delay: 1
 application.name:
quarry

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 106

https://www.enterprisedb.com/docs/efm/latest/

If you change efm_conf_settings , TPA always restarts EFM to activate the changes.

EFM witness

TPA installs and configures EFM as a witness on instances whose role contains efm-witness .

Repmgr

EFM doesn't provide a way to create new replicas. TPA uses repmgr to create replicas for Postgres versions 11 and earlier. Although repmgr packages
are installed in this case, the repmgrd daemon remains disabled when EFM is in use.

For Postgres versions 12 and later, any cluster that uses EFM uses pg_basebackup to create standby nodes and doesn't use repmgr in any form.

29.8 Configuring haproxy

TPA installs and configures haproxy on instances whose role contains haproxy .

By default, haproxy listens on 127.0.0.1:5432 for requests forwarded by pgbouncer running on the same instance. You must specify a list of
haproxy_backend_servers to forward requests to.

TPA installs the latest available version of haproxy by default. Set haproxy_package_version: 1.9.15* or any valid version specifier to install
a different version.

Note

See limitations of using wildcards in package_version in tpaexec-configure.

Haproxy packages are selected according to the type of architecture. You can use an EDB-managed haproxy package, but it requires a subscription.
Packages from PGDG extras repo can be installed if required.

You can set the following variables on any haproxy instance.

Variable Default value Description

haproxy_bind_add
ress

127.0.0.1 The address for haproxy to bind to.

haproxy_port 5432 (5444 for
EPAS)

The TCP port for haproxy to listen on.

haproxy_read_onl
y_port

5433 (5445 for
EPAS)

TCP port for read-only load balancer.

haproxy_backend_
servers

None A list of Postgres instance names.

haproxy_maxconn max_connecti
ons ×0.9

The maximum number of connections allowed per backend server. The default is derived from the
backend's max_connections setting.

 reconfigure.num.sync: true
 reconfigure.num.sync.max: 1
 reconfigure.sync.primary: true

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 107

haproxy_peer_ena
bled

True*
Add known haproxy hosts as peer list.
* False if failover_manager is harp or patroni.

Variable Default value Description

Read-only load balancer

Haproxy can be configured to listen on an additional port for read-only access to the database. Currently, this is supported only with the Patroni failover
manager. The backend health check determines which Postgres instances are currently acting as replicas and uses round-robin load balancing to
distribute traffic to them.

The read-only load balancer is disabled by default. You can turn it on by setting haproxy_read_only_load_balancer_enabled: true .

Server options

TPA generates /etc/haproxy/haproxy.cfg with a backend that has a default-server line and one line per backend server. All but the first
one are marked as "backup" servers.

To add options to the default-server line, set haproxy_default_server_extra_options to a list of options on the haproxy instance.

To add options (which override the defaults) to the individual server lines for each backend, set haproxy_server_options to a list of options on
the backend server.

Example

instances:
- Name:
one
 vars:
 haproxy_server_options:
 - maxconn 33
- Name:
two
…
- Name: proxy
 role:
 - haproxy
 vars:
 haproxy_backend_servers:
 -
one
 -
two
 haproxy_default_server_extra_options:
 - on-error mark-
down
 - on-marked-down shutdown-
sessions

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 108

29.9 Configuring HARP

TPA installs and configures HARP when failover_manager is set to harp . This value is the default for BDR-Always-ON clusters.

Installing HARP

You must provide the harp-manager and harp-proxy packages. Contact EDB to obtain access to these packages.

Configuring HARP

See the HARP documentation for more details on HARP configuration.

Variable Default
value

Description

cluster_name `` The name of the cluster.

harp_consensus_pr
otocol

 The consensus layer to use (etcd or bdr).

harp_location loca
tion

The location of this instance (defaults to the location parameter).

harp_ready_status
_duration

10 Amount of time in seconds the node's readiness status persists if not refreshed.

harp_leader_lease
_duration

6 Amount of time in seconds the Lead Master lease persists if not refreshed.

harp_lease_refres
h_interval

2000 Amount of time in milliseconds between refreshes of the Lead Master lease.

harp_dcs_reconnec
t_interval

1000 The interval, measured in ms, between attempts that a disconnected node tries to reconnect to the DCS.

harp_dcs_priority 500 In the case in which two nodes have an equal amount of lag and other qualified criteria to take the Lead
Master lease, acts as an additional ranking value to prioritize one node over another.

harp_stop_databas
e_when_fenced

fals
e

Rather than removing a node from all possible routing, stop the database on a node when it's fenced.

harp_fenced_node_
on_dcs_failure

fals
e

If HARP is unable to reach the DCS, then fence the node.

harp_maximum_lag 1048
576

Highest allowable variance (in bytes) between last recorded LSN of previous Lead Master and this node
before being allowed to take the Lead Master lock.

harp_maximum_camo
_lag

1048
576

Highest allowable variance (in bytes) between last received LSN and applied LSN between this node and its
CAMO partners.

harp_camo_enforce
ment

lag_
only

Whether to strictly enforce CAMO queue state.

harp_use_unix_soc
k

fals
e

Use Unix domain socket for manager database access.

harp_request_time
out

250 Time in milliseconds to allow a query to the DCS to succeed.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 109

https://documentation.enterprisedb.com/harp/release/latest/configuration/

harp_watch_poll_i
nterval

500 Milliseconds to sleep between polling DCS. Applies only when harp_consensus_protocol is bdr .

harp_proxy_timeou
t

1 Builtin proxy connection timeout, in seconds, to Lead Master.

harp_proxy_keepal
ive

5 Amount of time builtin proxy waits on an idle connection to the Lead Master before sending a keepalive ping.

harp_proxy_max_cl
ient_conn

75 Maximum number of client connections accepted by harp-proxy (max_client_conn).

harp_ssl_password
_command

None A custom command to receive the obfuscated sslpassword in the stdin and provide the handled sslpassword
via stdout.

harp_db_request_t
imeout

10s Similar to dcs -> request_timeout but for connection to the database.

Variable Default
value

Description

You can use the harp-config hook to execute tasks after the HARP configuration files are installed, for example, to install additional configuration files.

Consensus layer

The --harp-consensus-protocol argument to tpaexec configure is mandatory for the BDR-Always-ON architecture.

etcd

If the --harp-consensus-protocol etcd option is given to tpaexec configure , then TPA sets harp_consensus_protocol to
etcd in config.yml . It gives the etcd role to a suitable subset of the instances, depending on your chosen layout.

HARP v2 requires etcd v3.5.0 or later, which is available in the products/harp/release package repositories provided by EDB.

You can configure the following parameters for etcd,

Variable Default value Description

etcd_peer_port 2380 The port used by etcd for peer communication

etcd_client_port 2379 The port used by clients to connect to etcd

bdr

If the --harp-consensus-protocol bdr option is given to tpaexec configure , then TPA sets harp_consensus_protocol to bdr
in config.yml . In this case, the existing PGD instances are used for consensus, and no further configuration is required.

Configuring a separate user for HARP proxy

If you want HARP proxy to use a separate read-only user, you can specify that by setting harp_dcs_user: username under cluster_vars . TPA
uses the harp_dcs_user setting to create a read-only user and set it up in the DCS configuration.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 110

Configuring a separate user for HARP manager

If you want HARP manager to use a separate user, you can specify that by setting harp_manager_user: username under cluster_vars . TPA
uses that setting to create a new user and grant it the bdr_superuser role.

Custom SSL password command

The command provided by harp_ssl_password_command is used by HARP to de-obfuscate the sslpassword given in the connection string. If
sslpassword isn't present, then harp_ssl_password_command is ignored. If sslpassword isn't obfuscated, then
harp_ssl_password_command isn't required and should not be specified.

Configuring the HARP service

You can configure the following parameters for the HARP service.

Variable Default
value

Description

harp_manager_resta
rt_on_failure

fals
e

If true , the harp-manager service is overridden so it's restarted on failure. The default is false to
comply with the service installed by the harp-manager package.

Configuring HARP http(s) health probes

You can enable and configure the http(s) service for HARP that provides API endpoints to monitor the service's health.

Variable Default value Description

harp_
http_o
ption
s

enable: false``secure: false``host: <inventory_hostname>``port:
8080``probes: timeout: 10s``endpoint: "host=<proxy_name> port=
<6432> dbname=<bdrdb> user=<username>"

Configure the http section of HARP
config.yml that defines the

http(s) API settings.

The variable can contain these keys:

enable: false
secure: false
cert_file: "/etc/tpa/harp_proxy/harp_proxy.crt"
key_file: "/etc/tpa/harp_proxy/harp_proxy.key"
host: <inventory_hostname>
port: 8080
probes:
 timeout: 10s
endpoint: "<valid dsn>"

The cert_file and key_file keys are both required if you use secure: true and are willing to use your own certificate and key.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 111

You must ensure that both certificate and key are available at the given location on the target node before running deploy .

Leave both cert_file and key_file empty if you want TPA to generate a certificate and key for you using a cluster-specific CA certificate. TPA
CA certificate isn't "well-known." You need to add this certificate to the trust store of each machine that probes the endpoints. The CA certificate can be
found on the cluster directory on the TPA node at <cluster_dir>/ssl/CA.crt after deploy .

See the HARP documentation for more information about the available API endpoints.

29.10 Configuring Postgres Enterprise Manager (PEM)

TPA installs and configures PEM when you run the tpaexec configure command with the --enable-pem command line option.

The default behavior with --enable-pem is to enable the pem-agent role for all postgres instances in the cluster. The pem-agent role is also
added to Barman nodes when the --enable-pg-backup-api command line option is used along with --enable-pem .

A dedicated instance named pemserver is also added to the cluster.

Since PEM server uses a Postgres backend, a pemserver instance implicitly uses the postgres role as well, which ensures that pemserver gets a
valid Postgres cluster configured for use as a PEM backend. All configuration options available for a normal Postgres instance are valid for PEM's
backend Postgres instance as well. For details, see:

Configure pg_hba.conf
Configure postgresql.conf

PEM is available only by way of EDB's package repositories and therefore requires a valid subscription.

Supported architectures

PEM is supported with all architectures by way of the --enable-pem configuration command-line option. An exception is the BDR-Always-ON
architecture when used with EDB Postgres Extended. You can optionally edit the generated cluster config file (config.yml) and assign or remove the
pem-agent role from any Postgres instance in the cluster to enable or disable PEM there.

PEM configuration

TPA configures PEM agents and PEM server with the appropriate instance-specific settings, with the remaining settings set to their default values. Some
of the configuration options might be exposed for user configuration in the future.

PEM server's web interface is configured to run on https and uses port 443 for that configuration. PEM's web server configuration uses self-signed
certificates.

The default login credentials for the PEM server web interface use the Postgres backend database user, which is set to postgres for PostgreSQL and
enterprisedb for EDB Postgres Advanced Server clusters by default. You can get the login password for the web interface by running tpaexec show-
password $clusterdir $user .

Shared PEM server

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 112

https://documentation.enterprisedb.com/harp/release/latest/

Some deployments might want to use a single PEM server for monitoring and managing multiple clusters in the organization. Shared PEM server
deployment in tpaexec is supported by way of the pem_shared variable. You can set this variable by way of vars: under the PEM server instance
for the given cluster config that plans to use an existing PEM server. pem_shared is a Boolean variable, so possible values are true and false
(default). When declaring a PEM server instance as shared, we tell the given cluster config that the PEM server instance is in fact managed by a separate
cluster config that provisioned and deployed the PEM server in the first place. So any changes you want to make to the PEM server instance, including
the Postgres backend for PEM, are managed by the cluster where the PEM server instance isn't declared as a shared PEM instance.

A typical workflow for using a shared PEM server across multiple clusters looks something like this:

1. Create a tpaexec cluster with a single instance that has the pem-server role. (Call it pem-cluster for this example.) You can as easily use the
same workflow in a scenario where PEM is provisioned as part of a larger cluster and not just a single instance that runs as a PEM server. We use
a single-node cluster because it's easier to use that as an example and arguably easy to maintain as well.

2. In the other cluster (pg-cluster for example), reference this particular PEM server from $clusters/pem-cluster as a shared PEM
server instance. Use bare as the platform so you aren't trying to create a new PEM server instance. Also, specify the IP address of the PEM
server that this cluster can use to access the PEM server instance.

3. Before running deploy in the Postgres cluster, make sure that pg-cluster can access the PEM server instance by way of SSH. You can allow
this access by copying the pg-cluster public key to the PEM server instance by way of ssh-copy-id . Then do an SSH to make sure you
can log in without having to specify the password.

4. Update the PostgreSQL config file on the PEM server node so it allows connections from the new pg-cluster . You can modify the existing
pg_hba.conf file on the PEM server by adding new entries to pem_postgres_extra_hba_settings under vars: in the pem-
cluster config.yml file. For example:

- Name: pemserver
 node: 5
 role:
 - pem-server
 platform: bare
 public_ip: 13.213.53.205
 private_ip: 10.33.15.102
 vars:
 pem_shared: true

add pem-clusters key to the ssh-agent (handy for `aws`
platform)
$ cd $clusters/pem-cluster
$ ssh-add id_pem-clutser
$ cd $clusters/pg-cluster
$ ssh-keyscan -4 $pem-server-ip >>
known_hosts
$ ssh-copy-id -i id_pg-cluster.pub -o 'UserKnownHostsFile=tpa_known_hosts' $user@$pem-server-
ip
$ ssh -F ssh_config
pemserver

instances:
- Name: pemserver
 location: main
 node: 1
 role:
 - pem-server
 vars:
 pem_postgres_extra_hba_settings:
 - "# Allow pem connections from pg-
cluster1.quire"
 - hostssl pem +pem_agent 10.33.15.108/32
cert
 - "# Allow pem connections from pg-
cluster1.upside"

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 113

Then run tpaexec provision $clusters/pem-cluster followed by tpaexec deploy $clusters/pem-cluster . When
complete, nodes from your new pg-cluster can speak with the PEM server backend.

5. To ensure that PEM agents from the nodes in pg-cluster can connect and register with the PEM server backend, you must run export
EDB_PEM_CREDENTIALS_FILE=/path/to/pem/credentials/file before you run tpaexec deploy . The credentials file is a text
file that contains your access credentials to the PEM server's backend Postgres instance in the username:password format.

If you don't know the backend password, you can get that by using the tpaexec show-password command.

6. Run tpaexec deploy $clusters/pg-cluster so PEM is deployed on the new pg-cluster while using the shared PEM server
instance.

Connecting to the PEM UI

The PEM UI runs on an https interface, so you can connect with a running instance of a PEM server by way of https://$pem-server-ip/pem. Login
credentials for the PEM UI are set to the Postgres backend user that uses postgres for postgresql or enterprisedb for epas flavors. The
tpaexec show-password command shows the password for the backend user. For example:

See the PEM documentation for more details on using and configuring PEM.

29.11 Configuring pgbouncer

TPA will install and configure pgbouncer on instances whose role contains pgbouncer .

By default, pgbouncer listens for connections on port 6432 and forwards connections to 127.0.0.1:5432 (which may be either Postgres or haproxy,
depending on the architecture).

You can set the following variables on any pgbouncer instance.

Variable Default value Description

pgbouncer_port 6432 The TCP port pgbouncer should listen on

pgbouncer_backend 127.0.0.1 A Postgres server to connect to

 - hostssl pem +pem_agent 10.33.15.104/32
cert
 - "# Allow pem connections from pg-
cluster2.zippy"
 - hostssl pem +pem_agent 10.33.15.110/32
cert
 - "# Allow pem connections from pg-
cluster2.utopic"
 - hostssl pem +pem_agent 10.33.15.109/32
cert

$ cat
pem_creds
postgres:f1I%fw!QmWevdzw#EL#$Ulu1cWhg7&RT

tpaexec show-password $pem-clusterdir $user

tpaexec show-password $clusterdir $user

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 114

https://www.enterprisedb.com/docs/pem/latest/

pgbouncer_backend_
port 5432 The port that the pgbouncer_backend listens on

pgbouncer_max_clie
nt_conn

max_connections ×0.9
The maximum number of connections allowed; the default is derived from the backend's
max_connections setting if possible

pgbouncer_auth_use
r

pgbouncer_auth_user Postgres user to use for authentication

Variable Default value Description

Databases

By default, TPA will generate /etc/pgbouncer/pgbouncer.databases.ini with a single wildcard * entry under [databases] to forward
all connections to the backend server. You can set pgbouncer_databases as shown in the example below to change the database configuration.

Authentication

PgBouncer will connect to Postgres as the pgbouncer_auth_user and execute the (already configured) auth_query to authenticate users.

Example

29.12 Configuring pgd-proxy

instances:
- Name:
one
 vars:
 max_connections: 300
- Name:
two
- Name: proxy
 role:
 - pgbouncer
 vars:
 pgbouncer_backend:
one
 pgbouncer_databases:
 - name:
dbname
 options:
 pool_mode:
transaction
 dbname: otherdb
 - name: bdrdb
 options:
 host:
two
 port: 6543

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 115

TPA will install and configure pgd-proxy for the PGD-Always-ON architecture with PGD 5 on any instance with pgd-proxy in its role .

(By default, the PGD-Always-ON architecture will run pgd-proxy on all the data nodes in every location, but you can instead create any number of
additional proxy instances with --add-proxy-nodes-per-location 3 .)

Configuration

pgd-proxy is configured at PGD level via SQL functions.

Hash Function Description

pgd_proxy_options bdr.alter_proxy_option() pgd-proxy configuration, e.g. port

bdr_node_groups bdr.alter_node_group_option() configuration for the proxy's node group, e.g.
enable_proxy_routing

bdr_node_options bdr.alter_node_option() routing configuration for individual PGD nodes

See the PGD documentation for more details.

bdr_node_groups

Group-level options related to pgd-proxy can be set under bdr_node_groups along with other node group options:

cluster_vars:
 bdr_node_groups:
 - name: group1
 options:
 enable_proxy_routing: true

Note that enable_proxy_routing must be explicitly set to true for pgd-proxy to be enabled for the group.

bdr_node_options

Node-level options related to pgd-proxy can be set under bdr_node_options on any PGD instance:

instances:
- Name: first
 vars:
 bdr_node_options:
 route_priority: 42

pgd_proxy_options

Options for a pgd-proxy instance itself, rather than the group or nodes it is attached to, can be set under default_pgd_proxy_options under
cluster_vars (which applies to all proxies), or under pgd_proxy_options on any pgd-proxy instance:

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 116

cluster_vars:
 default_pgd_proxy_options:
 listen_port: 6432

instances:
- Name: someproxy
 vars:
 pgd_proxy_options:
 listen_port: 9000

In this case, while other instances will get their listen_port setting from cluster_vars , someproxy overrides that default setting and
configures its own listen_port in the instances' vars section.

PGD proxy http(s) health probes

You can enable and configure the http(s) service for PGD proxy that will provide api endpoints to monitor the proxy's health.

pgd_http_options under cluster_vars or instance vars will store all the settings that defines the http(s) api which live under the http
subsection of the proxy top section of pgd-proxy-config.yml .

The variable can contain these keys:

enable: false
secure: false
cert_file: "/etc/tpa/harp_proxy/harp_proxy.crt"
key_file: "/etc/tpa/harp_proxy/harp_proxy.key"
host: <inventory_hostname>
port: 8080
probes:
 timeout: 10s
endpoint: "<valid dsn>"

The cert_file and key_file keys are both required if you use secure: true and are willing to use your own certificate and key.

You must ensure that both certificate and key are available at the given location on the target node before running deploy .

Leave both cert_file and key_file empty if you want TPA to generate a certificate and key for you using a cluster specific CA certificate. TPA CA
certificate won't be 'well known', you will need to add this certificate to the trust store of each machine that will probe the endpoints. The CA certificate
can be found on the cluster directory on the TPA node at: <cluster_dir>/ssl/CA.crt after deploy .

see pgd-proxy documentation for more information on the available api endpoints.

29.13 pglogical configuration

TPA can configure pglogical replication sets (publications) and subscriptions with pglogical v2 and pglogical v3.

instances:
- node: 1
 Name: kazoo

…

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 117

The pglogical extension will be created by default if you define publications or subscriptions with type: pglogical , but it is up to you to determine
which version will be installed (e.g., subscribe to the products/pglogical3/release repository for pglogical3).

Introduction

TPA can configure everything needed to replicate changes between instances using pglogical, and can also alter the replication setup based on
config.yml changes.

To publish changes, you define an entry with type: pglogical in publications . To subscribe to these changes, you define an entry with
type: pglogical in subscriptions , as shown above.

Pglogical does not have a named publication entity (in the sense that built-in logical replication has CREATE PUBLICATION). A publication in
config.yml just assigns a name to a collection of replication sets, and subscriptions can use this name to refer to the desired provider.

To use pglogical replication, both publishers and subscribers need a named local pglogical node. TPA will create this node with
pglogical.create_node() if it does not exist. For publications, the publication name is used as the pglogical node name. There can be only one

pglogical node in any given database, so you can have only one entry in publications per database.

However, pglogical subscriptions do have a name of their own. TPA will create subscriptions with the given name , and use a default value for the
pglogical node name based on the instance's name and the name of the database in which the subscription is created. You can specify a different
node_name if required—for example, when you have configured a publication in the same database, so that all subscriptions in that database must

share the same pglogical node.

TPA does some basic validation of the configuration—it will point out the error if you spell replication_sets as replciation_sets , or try to
subscribe to a publication that is not defined, but it is your responsibility to specify a meaningful set of publications and subscriptions.

TPA will configure pglogical after creating users, extensions, and databases, but before any PGD configuration. You can set postgres_users and

 vars:
 publications:
 - type: pglogical
 database: example
 name:
some_publication_name
 replication_sets:
 - name: custom_replication_set

…

- node: 2
 Name:
keeper
 vars:
 subscriptions:
 - type: pglogical
 database: example
 name: some_subscription_name
 publication:
 name:
some_publication_name
 replication_sets:
 - default
 -
default_insert_only
 - custom_replication_set

…

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 118

postgres_databases to create databases for replication, and use the postgres-config-final hook to populate the databases before
pglogical is configured.

Publications

An entry in publications must specify a name and database , and may specify a list of named replication_sets with optional attributes,
as well as a list of table or sequence names.

Each replication set may specify optional attributes such as replicate_insert and autoadd_existing . If specified, they will be included as
named parameters in the call to pglogical.create_replication_set() , otherwise they will be left out and the replication set will be created
with pglogical's defaults instead.

Apart from manipulating the list of relations belonging to the replication set using the autoadd_* parameters in pglogical3, you can also explicitly
specify a list of tables or sequences. The name of each relation may be schema-qualified (unqualified names are assumed to be in public), and the
entry may include optional attributes such as row_filter (for tables only) or synchronize_data , as shown above.

Subscriptions

An entry in subscriptions must specify a name and database , define a publication to subscribe to, and may specify other optional attributes
of the subscription.

publications:
- type: pglogical
 database: example
 name:
some_publication_name
 replication_sets:
 - name: default
 replicate_insert: true
 replicate_update: true
 replicate_delete: true
 replicate_truncate: true
 autoadd_tables: false
 autoadd_sequences: false
 autoadd_existing: true
 - name: custom_replication_set
 tables:
 - name: sometable
 - name: '"some-schema".othertable'
 columns: [a, b,
c]
 row_filter: 'a >
42'
 synchronize_data: true
 sequences:
 - name: someseq
 synchronize_data: true
 - name: '"some-schema".otherseq'

subscriptions:
- type: pglogical
 database: example
 name: some_subscription_name

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 119

A subscription can set publication.name (as shown above) to define which publication to subscribe to. If there is more than one publication with
that name (across the entire cluster), you may specify the name of an instance to disambiguate. If you want to refer to publications by name, don't create
multiple publications with the same name on the same instance.

Instead of referring to publications by name, you may explicitly specify a provider_dsn instead. In this case, the given DSN is passed to
pglogical.create_subscription() directly (and publication is ignored). You can use this mechanism to subscribe to instances outside

the TPA cluster.

The other attributes in the example above are optional. If defined, they will be included as named parameters in the call to
pglogical.create_subscription() , otherwise they will be left out. (Some attributes shown are specific to pglogical3.)

Configuration changes

For publications, you can add or remove replication sets, change the attributes of a replication set, or change its membership (the tables and sequences
it contains).

If you change replicate_* or autoadd_* , TPA will call pglogical.alter_replication_set() accordingly (but note that you cannot
change autoadd_existing for existing replication sets, and the autoadd_* parameters are all pglogical3-specific).

 node_name: optional_pglogical_node_name
 publication:
 name:
some_publication_name
 # Optional
attributes:
 synchronize_structure: true
 synchronize_data: true
 forward_origins: ['all']
 strip_origins: false
 apply_delay: '1 second'
 writer: 'heap'
 writer_options:
 - 'magic'
 - 'key=value'
 - 'just-a-string'
 # Optional attributes that can be changed for an
existing
 #
subscription:
 replication_sets:
 - default
 -
default_insert_only
 - custom_replication_set
 enabled: true

- type: pglogical

…
 publication:
 name:
some_publication_name
 instance: kazoo

 #
OR

 provider_dsn: "host=… dbname=…"

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 120

If you change the list of tables or sequences for a replication set, TPA will reconcile these changes by calling
pglogical.alter_replication_set_{add,remove}_{table,sequence}() as needed.

However, if you change synchronize_data or other attributes for a relation (table or sequence) that is already a member of a replication set, TPA
will not propagate the changes (e.g., by dropping the table and re-adding it with a different configuration).

For subscriptions, you can only change the list of replication_sets and enable or disable the subscription (enabled: false).

In both cases, any replication sets that exist but are not mentioned in the configuration will be removed (with
pglogical.alter_subscription_remove_replication_set() on the subscriber, or pglogical.drop_replication_set() on

the publisher—but the default replication sets named default , default_insert_only , and ddl_sql will not be dropped.)

If you edit config.yml, remember to run tpaexec provision before running tpaexec deploy .

Interaction with PGD

It is possible to use PGD and pglogical together in the same database if you exercise caution.

PGD v3 uses pglogical3 internally, and will create a pglogical node if one does not exist. There can be only one pglogical node per database, so if you
configure a pglogical publication in bdr_database , the instance's bdr_node_name must be the same as the publication's name . Otherwise, the
node will be created for the publication first, and bdr.create_node() will fail later with an error about a node name conflict. Any
subscriptions in bdr_database must use the same node_name too.

Limitations

There is currently no support for pglogical.replication_set_{add,remove}_ddl()

There is currently no support for pglogical.replication_set_add_all_{tables,sequences}()

There is currently no support for pglogical.alter_subscription_{interface,writer_options}() or
pglogical.alter_subscription_{add,remove}_log()

pglogical v1 support is not presently tested.

29.14 Configuring repmgr

TPA will install repmgr on all postgres instances that have the failover_manager instance variable set to repmgr ; this is the default setting.

The directory of the repmgr configuration file defaults to /etc/repmgr/<version> , where <version> is the major version of postgres being
installed on this instance, but can be changed by setting the repmgr_conf_dir variable for the instance. The configuration file itself is always
called repmgr.conf .

The default repmgr configuration will set up automatic failover between instances configured with the role primary and the role replica .

repmgr configuration

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 121

The following instance variables can be set:

repmgr_priority : sets priority in the config file repmgr_location : sets location in the config file
repmgr_reconnect_attempts : sets reconnect_attempts in the config file, default 6 repmgr_reconnect_interval : sets
reconnect_interval in the config file, default 10 repmgr_use_slots : sets use_replication_slots in the config file, default 1
repmgr_failover : sets failover in the config file, default automatic

Any extra settings in repmgr_conf_settings will also be passed through into the repmgr config file.

repmgr on PGD instances

On PGD instances, repmgr_failover will be set to manual by default.

29.15 How TPA uses 2ndQuadrant and EDB repositories

TPA can download EDB software (including 2ndQuadrant) from several package sources, depending on the selected software.

Only the special configuration options and logic for EDB and 2ndQuadrant sources are described here. You can add arbitrary yum or apt repositories
independently of this logic. Likewise, you can download packages in advance and add them to a local repository if you prefer.

Package sources used by TPA

TPA downloads software from three package sources. Each of these sources provides multiple repositories. In some cases, the same software is available
from more than one source.

EDB Repos 2.0
EDB Repos 1.0
2ndQuadrant Repos

By default, TPA selects sources and repositories based on the architecture and other options you specify. It's generally not necessary to change these.
However, before running tpaexec deploy , you must ensure that you have a valid subscription for all the sources used and that you exported the
token. Otherwise, the operation fails.

Note

EDB is in the process of publishing all software through Repos 2.0, and will eventually remove the older repositories.

Authenticating with package sources

To use EDB Repos 2.0, before you run tpaexec, you must run export EDB_SUBSCRIPTION_TOKEN=xxx . You can get your subscription token from
the web interface.

To use 2ndQuadrant repositories, before you run tpaexec, you must run export TPA_2Q_SUBSCRIPTION_TOKEN=xxx . You can get your
subscription token from the 2ndQuadrant Portal. In the left menu, under Company info, select Company. Some repositories are available only by prior
arrangement.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 122

https://www.enterprisedb.com/repos/
https://www.enterprisedb.com/repos/legacy
https://techsupport.enterprisedb.com/customer_portal/sw/
https://www.enterprisedb.com/repos/
https://www.enterprisedb.com/repos-downloads
https://techsupport.enterprisedb.com/customer_portal/sw/

To use EDB Repos 1.0, you must create a text file that contains your access credentials in the username:password format. Before you run tpaexec,
run:

export EDB_REPO_CREDENTIALS_FILE=/path/to/credentials/file

If you don't have an account for any of the sites listed, you can register for access at the Account Registration page.

How sources are selected by default

If you select the PGD-Always-ON architecture, repositories are selected from EDB Repos 2.0, and all software is sourced from these repositories.

If you select the M1 architecture and don't select any proprietary EDB software, all packages are sourced from PGDG. If you select any proprietary EDB
software, all packages are sourced from EDB Repos 2.0.

For the BDR-Always-ON architecture, the default source is EDB Repos 2.0 for new clusters, and the necessary repositories are added from this source.
(Existing clusters use 2ndQuadrant repositories until you reconfigure them.) In addition, the PGDG repositories are used for community packages, such
as PostgreSQL and etcd, as required. If EDB software that isn't available in the 2ndQuadrant repos is required (such as EDB Postgres Advanced Server),
TPA selects the repositories from EDB Repos 1.0.

Specifying EDB 2.0 repositories

To specify the complete list of repositories from EDB Repos 2.0 to install on each instance, set edb_repositories to a list of EDB repository names:

This example configures the enterprise and postgres_distributed repositories, giving access to EDB Postgres Advanced Server and PGD
version 5 products. On Debian or Ubuntu systems, it uses the apt repository. RedHat systems use the rpm repositories through the yum front end. SLES
systems use the rpm repositories through the zypper front end.

If you specify any EDB repositories, any 2ndQuadrant repositories specified are ignored and no EDB Repos 1.0 are installed.

Specifying 2ndQuadrant repositories

To specify the complete list of 2ndQuadrant repositories to install on each instance in addition to the 2ndQuadrant public repository, set
tpa_2q_repositories to a list of 2ndQuadrant repository names:

This example installs the pglogical3 and bdr3 release repositories. On Debian and Ubuntu systems, it uses the apt repository, and on RedHat systems, it
uses the yum repository.

The dl/default/release repository is always installed by default, unless you either:

cluster_vars:
 edb_repositories:
 - enterprise
 - postgres_distributed

cluster_vars:
 tpa_2q_repositories:
 - products/pglogical3/release
 -
products/bdr3/release

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 123

https://www.enterprisedb.com/repos/legacy
https://www.enterprisedb.com/user/register?destination=/repository-access-request

Explicitly set tpa_2q_repositories: []
Have at least one entry in edb_repositories

Either of these action results in no 2ndQuadrant repositories being installed.

29.16 Configuring EDB Repos 2.0 repositories

You can configure EDB Repos 2.0 package repositories using cluster variables.

For more details on the EDB and 2ndQuadrant package sources used by TPA, see How TPA uses 2ndQuadrant and EDB repositories.

To specify the complete list of repositories from EDB Repos 2.0 to install on each instance, set edb_repositories to a list of EDB repository names:

This example installs the enterprise subscription repository as well as postgres_distributed, giving access to EDB Postgres Advanced Server and PGD
version 5 products. On Debian or Ubuntu systems, it uses the apt repository. On RedHat or SLES systems, it uses the rpm repositories, through the yum or
zypper front ends, respectively.

If you specify any EDB repositories, any 2ndQuadrant repositories specified are ignored and no EDB Repos 1.0 are installed.

To use EDB Repos 2.0, you must export EDB_SUBSCRIPTION_TOKEN=xxx before you run tpaexec. You can get your subscription token from the
web interface.

29.17 Configuring 2ndQuadrant repositories

This page explains how to configure 2ndQuadrant package repositories on any system.

For more details on the EDB and 2ndQuadrant package sources used by TPA see this page.

To specify the complete list of 2ndQuadrant repositories to install on each instance in addition to the 2ndQuadrant public repository, set
tpa_2q_repositories to a list of 2ndQuadrant repository names:

This example will install the pglogical3 and bdr3 release repositories. On Debian and Ubuntu systems, it will use the APT repository, and on RedHat
systems, it will use the YUM repository. The 2ndQuadrant repositories are not available for SLES systems.

To use 2ndQuadrant repositories, you must export TPA_2Q_SUBSCRIPTION_TOKEN=xxx before you run tpaexec. You can get your subscription
token from the 2ndQuadrant Portal, under "Company info" in the left menu, then "Company". Some repositories are available only by prior arrangement.

The dl/default/release repository is always installed by default, unless you

cluster_vars:
 edb_repositories:
 - enterprise
 - postgres_distributed

cluster_vars:
 tpa_2q_repositories:
 - products/pglogical3/release
 -
products/bdr3/release

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 124

https://www.enterprisedb.com/repos/
https://www.enterprisedb.com/repos-downloads
https://techsupport.enterprisedb.com/customer_portal/sw/

explicitly set tpa_2q_repositories: [] , or
have at least one entry in edb_repositories .

Either or the above will result in no 2ndQuadrant repositories being installed.

29.18 Configuring APT repositories

You can configure APT package repositories on Debian and Ubuntu systems.

You can define named repositories in apt_repositories and decide which ones to use by listing the names in apt_repository_list :

This configuration installs:

The GPG key (with id key_id , obtained from key_url)
A new entry under /etc/apt/sources.list.d with the given repo line (or lines) for the PGDG repository (which is already defined by
default)
The new Example repository

When you configure additional repositories, remember to include PGDG in apt_repository_list if you still want to install PGDG packages.

You can set apt_repository_list: [] to not install any repositories.

29.19 Configuring YUM repositories

This page explains how to configure YUM package repositories on RedHat systems.

You can define named repositories in yum_repositories , and decide which ones to use by listing the names in yum_repository_list :

cluster_vars:
 apt_repositories:
 Example:
 key_id:
XXXXXXXX
 key_url: https://repo.example.com/path/to/XXXXXXXX.asc
 repo: >-
 deb https://repo.example.com/repos/Example/ xxx-Example
main

 apt_repository_list:
 - PGDG
 - Example

cluster_vars:
 yum_repositories:
 Example:
 rpm_url: >-
 https://repo.example.com/repos/Example/example-
repo.rpm

 Other:
 description: "Optional repository description"

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 125

This example shows two ways to define a YUM repository.

If the repository has a “repo RPM” (a package that customarily installs the necessary /etc/yum.repos.d/*.repo file and any GPG keys needed to
verify signed packages from the repository), you can just point to it.

Otherwise, you can specify a description, a baseurl , and a gpgkey URL, and TPA will create a /etc/yum.repos.d/Other.repo file for you
based on this information.

The EPEL and PGDG repositories are defined by default. The EPEL repository is required for correct operation, so you must always include EPEL in
yum_repository_list . You should also include PGDG if you want to install PGDG packages.

You can set yum_repository_list: [] to not install any repositories (but things will break without an alternative source of EPEL packages).

If you need to perform any special steps to configure repository access, you can use a pre-deploy hook to create the .repo file yourself:

In this case, you do not need to list the repository in yum_repository_list .

29.20 Creating and using a local repository

If you create a local repository in your cluster directory, TPA makes any packages in the repository available to cluster instances. This provides an easy
way to ship extra packages to your cluster.

Optionally, you can also instruct TPA to configure the instances to use only this repository, disabling all others. In this case, you must provide all
packages required during the deployment, starting from basic dependencies like rsync, Python, and so on.

You can create a local repository manually or have TPA create one for you.

 baseurl:
https://other.example.com/repos/Other/$basearch
 gpgkey:

https://other.example.com/repos/Other/gpg.XXXXXXXXXXXXXXXX.key

 yum_repository_list:
 - EPEL
 - PGDG
 - Example
 - Other

- name: Define Example
repository
 copy:
 dest:
/etc/yum.repos.d/example.repo
 owner: root
 group: root
 mode: "0644"
 content: |
 [example]
 name=Example repo

baseurl=https://repo.example.com/repos/Example/
 enabled=1
 gpgkey=https://repo.example.com/repokey.asc
 gpgcheck=1

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 126

Note

Specific instructions are available for managing clusters in an air-gapped environment.

Creating a local repository with TPA

TPA includes tools to help create such a local repository. Specifically you can use the --enable-local-repo switch with tpaexec configure
to create an empty directory structure to use as a local repository. Use tpaexec download-packages to populate that structure with the
necessary packages.

Creating the directory structure

To configure a cluster with a local repository, run:

`tpaexec configure --enable-local-repo …`

This command generates your cluster configuration and creates a local-repo directory and OS-specific subdirectories. See Local repo layout for
details.

Populate the repository and generate metadata

Run tpaexec download-packages to download all the packages required by a cluster into the local-repo. The resulting repository contains the
full dependency tree of all packages so the entire cluster can be installed from this repository. Metadata for the repository is also created, which means
it's ready to use immediately.

Creating a local repository manually

Local repo layout

To create a local repository manually, you must first create an appropriate directory structure. When using --enable-local-repo , TPA creates a
local-repo directory and OS-specific subdirectories within it (for example, local-repo/Debian/10), based on the OS you select for the

cluster. We recommend that you also use this structure for repositories you create manually.

For example, a cluster running RedHat 8 might have the following layout:

local-repo/
`-- RedHat
 |-- 8.5 -> 8
 `-- 8
 `-- repodata

For each instance, TPA looks for the following subdirectories of local-repo in order and uses the first one it finds:

<distribution>/<version> , e.g., RedHat/8.5
<distribution>/<major version> , e.g., RedHat/8

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 127

<distribution>/<release name> , e.g., Ubuntu/focal
<distribution> , e.g., Debian

The local-repo directory itself.

If none of these directories exists, TPA doesn't try to set up any local repository on target instances.

Populating the repository and generating metadata

You must complete the steps that follow before running tpaexec deploy .

To populate the repository, copy the packages you want to include into the appropriate directory. Then generate metadata using the correct tool for your
system, as follows.

Note

You must generate the metadata on the control node, that is, the machine where you run tpaexec. TPA copies the metadata and packages to
target instances.

Note

You must generate the metadata in the subdirectory that the instance will use. That is, if you copy packages into local-repo/Debian/10 ,
you must create the metadata in that directory, not in local-repo/Debian .

Debian/Ubuntu repository metadata

For Debian-based distributions, install the dpkg-dev package:

$ sudo apt-get update && sudo apt-get install -y dpkg-dev

Use dpkg-scanpackages to generate the metadata:

$ cd local-repo/Debian/buster
download/copy .deb package files
$ dpkg-scanpackages . | gzip > Packages.gz

RedHat/SLES repository metadata

First, install the createrepo package:

$ sudo yum install -y createrepo

Use createrepo to generate the metadata:

$ cd local-repo/RedHat/8
download/copy .rpm package files
$ createrepo .

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 128

How TPA uses the local repository

Copying the repository

TPA uses rsync to copy the contents of the repository directory to a directory on target instances. The contents include the generated metadata.

If rsync isn't already available on an instance, TPA can install it (that is, apt-get install rsync or yum install rsync). However, if you
have set use_local_repo_only , the rsync package must be included in the local repo. If required, TPA copies just the rsync package using scp and
installs it before copying the rest.

Repository configuration

After copying the contents of the local repo to target instances, TPA configures the destination directory as a local repository, that is, path based, rather
than URL based.

If you provide, say, example.deb in the repository directory, running apt-get install example is enough to install it, just like any package in
any other repository.

Package installation

TPA configures a repository with the contents that you provide. But if the same package is available from different repositories, it's up to the package
manager to decide which one to install. Usually it installs the latest, unless you specify a particular version.

However, if you set use_local_repo_only: yes , TPA disables all other package repositories, so that instances can use only the packages that
you provide in local-repo .

29.21 Installing from source

You can define a list of extensions to build and install from their Git repositories by setting install_from_source in config.yml :

cluster_vars:
 install_from_source:
 - name:
ext
 git_repository_url: https://repo.example.com/ext.git
 git_repository_ref:
dev/example

 - name:
otherext
 git_repository_url: ssh://repo.example.com/otherext.git
 git_repository_ref:
master
 source_directory:
/opt/postgres/src/otherext
 build_directory: /opt/postgres/build/otherext
 build_commands:
 - "make -f /opt/postgres/src/otherext/Makefile
install"
 build_environment:
 VAR: value

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 129

TPA builds and installs extensions one by one in the order listed. So you can build extensions that depend on another (such as pglogical and BDR) by
mentioning them in the correct order.

Each entry must specify a name , git_repository_url , and git_repository_ref (default: master) to build. You can use SSH agent
forwarding or an HTTPS username/password to authenticate to the Git repository. Also set source_directory , build_directory ,
build_environment , and build_commands , as shown in the example.

To reuse the build directory when doing repeated deploys, run tpaexec deploy … --skip-tags build-clean . Otherwise the old build
directory is emptied before starting the build. You can also configure local source directories to speed up your development builds.

Whenever you run a source build, Postgres is restarted.

Build dependencies

If you're building from source, TPA ensures that the basic Postgres build dependencies are installed. If you need any additional packages, mention them
in packages . For example:

29.22 Git credentials

You can clone Git repositories that require authentication. If you're installing Postgres from source or using install_from_source to compile and
install extensions, and the source repositories require authentication, you can use SSH key-based authentication or HTTPS username/password based
authentication to access them with TPA.

You have two options to authenticate without writing the credentials to disk on the target instance:

For an ssh:// repository, you can add an SSH key to your local SSH agent. Agent forwarding is enabled by default if you use --install-
from-source (forward_ssh_agent: yes in config.yml).

For an https:// repository, you can export TPA_GIT_CREDENTIALS=username:token in your environment before running
tpaexec deploy .

Note

Docker containers on macOS can't use ssh:// URLs because SSH access from the host to containers doesn't work. https:// repository URLs will
work fine.

SSH key authentication

If you're cloning an SSH repository and have an SSH key pair (id_example and id_example.pub), use SSH agent forwarding to authenticate on
the target instances:

You need to run ssh-agent locally. If your desktop environment doesn't already set this up for you (as most do: pgrep ssh-agent to
check if it's running), run ssh-agent bash to temporarily start a new shell with the agent enabled. Then run tpaexec deploy from that

cluster_vars:
 packages:
 common:
 - golang-1.16

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 130

shell.

Add the required key(s) to the agent with ssh-add /path/to/id_example (the private key file).

Enable SSH agent forwarding by setting forward_ssh_agent: yes at the top level in config.yml before tpaexec provision .
(This is done by default if you use --install-from-source .)

During deployment, any keys you add to your agent are made available for authentication to remote servers through the forwarded agent connection.

Use SSH agent forwarding with caution, preferably with a disposable key pair generated specifically for this purpose. Users with the privileges to access
the agent's Unix domain socket on the target server can co-opt the agent into impersonating you while authenticating to other servers.

HTTPS username/password authentication

If you're cloning an HTTPS repository with a username and authentication token or password, just export
TPA_GIT_CREDENTIALS=username:token in your environment before tpaexec deploy . During deployment, these credentials are made
available to any git clone or git pull tasks (only). They aren't written to disk on the target instances.

29.23 Environment

You can set target_environment to specify environment variables that TPA should set on the target instances during deployment (e.g., to specify
an HTTPS proxy, as shown below).

cluster_vars:
 target_environment:
 https_proxy: https://proxy.example:8080

TPA will ensure these settings are present in the environment (along with any others it needs) during deployment and the later execution of any cluster
management commands.

These environment settings are not persistent, but you can instead use extra_bashrc_lines to set environment variables for the postgres user.

29.24 Python environment

TPA decides which Python interpreter to use based on the distribution it detects on a target instance. It will use Python 3 wherever possible, and fall
back to Python 2 only when unavoidable.

The tpaexec configure command will set preferred_python_version according to the distribution.

Distribution Python 2 Python 3

Debian 10/buster ✓ ✓ (3.7)

Debian 9/stretch ✓ ✓ (3.5)

Debian 8/jessie ✓ ✗ (3.4)

Ubuntu 16.04/xenial ✓ ✓ (3.5)

Ubuntu 18.04/bionic ✓ ✓ (3.6)

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 131

Ubuntu 20.04/focal ✗ ✓ (3.8)

Ubuntu 22.04/jammy ✗ ✓ (3.10)

RHEL 7.x ✓ ✗ (3.6)

RHEL 8.x ✗ ✓ (3.6)

Distribution Python 2 Python 3

Ubuntu 20.04, 22.04 and RHEL 8.x can be used only with Python 3.

RHEL 7.x ships with Python 3.6, but the librpm bindings for Python 3 are not available, so TPA must use Python 2 instead. Debian 8 does not have the
Python 3.5+ required to support Ansible.

You can decide for other distributions whether you prefer python2 or python3 , but the default for new clusters is python3 .

Backwards compatibility

For compatibility with existing clusters, the default value of preferred_python_version is python2 , but you can explicitly choose python3
even on systems that were already deployed with python2 .

TPA will ignore this setting on distributions where it cannot use Python 3.

29.25 Configuring /etc/hosts

By default, TPA adds lines to /etc/hosts on the target instances with the IP address and hostnames of every instance in the cluster. This enables the
instances to use each other's names for communication within the cluster (for example, in primary_conninfo for Postgres).

You can specify a list of extra_etc_hosts_lines , too:

If you don't want any of the default entries, you can specify the complete list of etc_hosts_lines for an instance instead. Add only those lines to
/etc/hosts :

cluster_vars:
 preferred_python_version: python3

instances:
- Name:
one

…
 vars:
 extra_etc_hosts_lines:
 - 192.0.2.1
acid.example.com
 - 192.0.2.2 water.example.com

instances:
- Name:
one

…
 vars:

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 132

If your /etc/hosts doesn't contain the default entries for instances in the cluster, you need to ensure the names can be resolved in some other way.

29.26 Filesystem configuration

TPA allows you to define a list of volumes attached to each instance.

This list comprises both platform-specific settings that are used during provisioning and filesystem-level settings used during deployment.

First, tpaexec provision will use the information to create and attach volumes to the instance (if applicable; see platform-specific sections below
for details). Then it will write a simplified list of volumes (containing only non-platform-specific settings) as a host var for the instance. Finally,
tpaexec deploy will act on the simplified list to set up and mount filesystems, if required.

Here's a moderately complex example from an AWS cluster:

In this example, the EC2 instance will end up with a 32GB EBS root volume, a 64GB RAID-1 volume comprising two provisioned-iops EBS volumes
mounted as /opt/postgres/data, and a /tmp/scratch filesystem comprising all available instance-store (“ephemeral”) volumes, whose number and size
are determined by the instance type.

The details are documented in the section on AWS below, but settings like volume_type and volume_size are used during provisioning, while
settings under vars like volume_for or mountpoint are written to the inventory for use during deployment.

 etc_hosts_lines:
 - 192.0.2.1
acid.example.com
 - 192.0.2.2 water.example.com
 - 192.0.2.3
base.example.com

instances:
- Name:
one

…
 volumes:
 - device_name: root
 volume_type:
gp2
 volume_size: 32
 - raid_device:
/dev/md0
 device_name: /dev/xvdf
 volume_type:
io2
 volume_size: 64
 raid_units: 2
 raid_level: 1
 iops: 5000
 vars:
 volume_for: postgres_data
 encryption: luks
 - raid_device:
/dev/md1
 device_name: /dev/xvdh
 ephemeral: ephemeral0
 raid_units:
all
 vars:
 mountpoint: /mnt/scratch

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 133

default_volumes

Volumes are properties of an instance. You cannot set them in cluster_vars , because they contain platform-specific settings.

The instance_defaults mechanism makes special allowances for volume definitions. Since volume definitions in a large cluster may be quite
repetitive (especially since we recommend that instances in a cluster be configured as close to each other as possible, you can specify
default_volumes as shown here:

Here every instance will have a 32GB root volume and a 100GB additional volume by default (as is the case for instance one , which does not specify
anything different). Instance two will have the same root volume, but it overrides /dev/xvdf to be 64GB instead, and has another 64GB volume in
addition. Instance three will have the same root volume, but no additional volume because it sets volume_type: none for the default
/dev/xvdf . Instance four will have no volumes at all.

An instance starts off with whatever is specified in default_volumes , and its volumes entries can override a default entry with the same
device_name , remove a volume by setting volume_type to none , add new volumes with different names, or reject the defaults altogether.

(This behaviour of merging two lists is specific to default_volumes . If you set any other list in both instance_defaults and instances ,
the latter will override the former completely.)

Platform AWS

On AWS EC2 instances, you can attach EBS volumes.

instance_defaults:
 default_volumes:
 - device_name: root
 volume_type:
gp2
 volume_size: 32
 - device_name: /dev/xvdf
 volume_size: 100

instances:
- Name:
one

…
- Name:
two
 volumes:
 - device_name: /dev/xvdf
 volume_size: 64
 - device_name: /dev/xvdg
 volume_size: 64

…
- Name: three
 volumes:
 - device_name: /dev/xvdf
 volume_type: none
- Name: four
 volumes: []

instances:
- Name:
one

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 134

TPA translates a device_name of root to /dev/sda or /dev/xvda based on the instance type, so that you don't need to remember (or
change) which one to use.

The volume_type specifies the EBS volume type, e.g., gp2 (for “general-purpose” EBS volumes), io1 for provisioned-IOPS volumes (in which case
you must also set iops: 5000), etc.

The volume_size specifies the size of the volume in gigabytes.

Set encrypted: yes to enable EBS encryption at rest. (This is an AWS feature, enabled by default in newly-generated TPA configurations, and is
different from LUKS encryption, explained below.)

Set delete_on_termination to false to prevent the volume from being destroyed when the attached instance is terminated (which is the
default behaviour).

Set ephemeral: ephemeralN to use a physically-attached instance store volume, formerly known as an ephemeral volume. The number, type, and
size of available instance store volumes depends on the instance type. Not all instances have instance store volumes. Use instance store volumes only
for testing or temporary data, and EBS volumes for any data that you care about.

For an EBS volume, you can also set snapshot: snap-xxxxxxxx to attach a volume from an existing snapshot. Volumes restored from snapshots
may be extraordinarily slow until enough data has been read from S3 and cached locally. (In particular, you can spin up a new instance with PGDATA
from a snapshot, but expect it to take several hours before it is ready to handle your full load.)

If you set attach_existing: yes for a volume, and there is an existing unattached EBS volume with matching Name/type/size/iops, a new
volume will not be created when launching the instance, but instead the existing one will be attached to the instance the first time it starts. Reattached
EBS volumes do not suffer from the performance limitations of volumes created from snapshots.

Platform bare

TPA has no control over what volumes may be attached to pre-provisioned bare instances, but if you define volumes with the appropriate
device_name , it will handle mkfs and mount for the devices if required.

Platform Docker

…
 volumes:
 - device_name: root
 volume_type:
gp2
 volume_size: 32
 encrypted: yes

…
 - device_name: /dev/xvdf
 volume_type:
io1
 volume_size: 32
 iops: 10000
 delete_on_termination: false

…
 - device_name: /dev/xvdg
 ephemeral: ephemeral0

…

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 135

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

Docker containers can have attached volumes, but they are bind-mounted directories, not regular block devices. They do not need to be separately
initialised or mounted. As such, the configuration looks quite different.

You may recognise these volume specifications as arguments to docker run -v .

The volumes are attached when the container is created, and there are no further actions during deployment.

RAID arrays

On AWS EC2 instances, you can define RAID volumes:

This example will attach 4×100GB EBS gp2 volumes (/dev/xvd[f-i]) and assemble them into a RAID-1 volume named /dev/md0 . The handling of
volume_for or mountpoint during deployment happens as with any other volume.

TPA does not currently support the creation and assembly of RAID arrays on other platforms, but you can use an existing array by adding an entry to
volumes with device_name: /dev/md0 or /dev/mapper/xyz . TPA will handle mkfs and mount as with any other block device.

LUKS encryption

TPA can set up a LUKS-encrypted device:

instances:
- Name:
one
 platform:
docker

…
 volumes:
 - /host/path/to/dir:/tmp/container/path:ro
 - named_volume:/mnt/somevol:rw

instances:
- Name:
one

…
 volumes:
 - raid_device:
/dev/md0
 device_name: /dev/xvdf
 raid_units: 2
 raid_level: 1
 volume_type:
gp2
 volume_size: 100
 vars:
 volume_for: postgres_data

instances:
- Name:
one

…

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 136

If a volume with encryption: luks set is not already initialised, TPA will use cryptsetup to first luksFormat and then luksOpen it to
map it under /dev/mapper/mappedname before handling filesystem creation as with any other device.

(To avoid any possibility of data loss, TPA will refuse to set up LUKS encryption on a device that contains a valid filesystem already.)

If you create a LUKS-encrypted volume_for: postgres_data , TPA will configure Postgres to not start automatically at boot. You can use
tpaexec start-postgres clustername to mount the volume and start Postgres (and stop-postgres to stop Postgres and unmap the

volume).

The LUKS passphrase is generated locally and stored in the vault.

Filesystem creation and mounting

If any device does not contain a valid filesystem, it will be initialised with mkfs .

You can specify the fstype (default: ext4), fsopts to be passed to mkfs (default: none), and mountopts to be passed to mount and written to
fstab (see below).

TPA will set the readahead for the device to 16MB by default (and make the value persist across reboots), but you can specify a different value for the
volume as shown above.

There are two ways to determine where a volume is mounted. You can either specify a mountpoint explicitly, or you can set volume_for to
postgres_data , postgres_wal , postgres_tablespace or barman_data , and TPA will translate the setting into an appropriate

mountpoint for the system.

 volumes:
 - device_name:
/dev/xyz
 vars:
 encryption: luks
 luks_volume: mappedname
 volume_for:
…

instances:
- Name:
one

…
 volumes:
 - device_name:
/dev/xyz
 vars:
 volume_for:
…
 fstype: ext4
 fsopts:
 - -
cc
 - -m
2
 mountopts: 'defaults,relatime,nosuid'
 readahead: 65536
 owner: root
 group: root
 mode: "0755"

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 137

Once the mountpoint is determined, the device will be mounted there with the given mountopts (default: defaults,noatime). An entry
will also be created for the filesystem in /etc/fstab .

You may optionally specify owner , group , or mode for the volume, and these attributes will be set on the mountpoint . Remember that at this
very early stage of deployment, you cannot count on the postgres user to exist. In any case, TPA will (separately) ensure that any directories needed
by Postgres have the right ownership and permissions, so you don't have to do it yourself.

29.27 Uploading artifacts

You can define artifacts to create or copy files to target instances:

The following types are supported:

Use path to create or remove and change the ownership or mode of files and directories. (This type takes the same parameters as Ansible's
file module, which it uses internally.)

Use file to copy a file from the controller and set the ownership and mode (uses copy).

Use archive to extract files from an archive to a specified location (uses unarchive).

Use directory to rsync a directory from the controller to target instances (uses synchronize).

The example shows one entry for each of these artifact types. You can use these or any other parameters that the corresponding Ansible module
accepts.

Copying files and directories to target instances is a common need. Defining artifacts can be a convenient shortcut to writing a custom hook.

29.28 ssh_key_file

cluster_vars:
 artifacts:
 - type: path
 path: /some/target/path
 state: directory
 owner: root
 group: root
 mode: "0755"
 - type: file
 src: /host/path/to/file
 dest: /target/path/to/file
 owner: root
 group: root
 mode: "0644"
 - type: archive
 src:
example.tar.gz
 dest: /some/target/path
 - type: directory
 src: /host/path/a/
 dest: /target/path/b/

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 138

By default, tpaexec provision will use ssh-keygen to generate a new SSH keypair for the cluster (into files named id_cluster_name and
id_cluster_name.pub inside the cluster directory).

If you want to use an existing key instead, you can set ssh_key_file at the top level of config.yml to the location of an SSH private key file. The
corresponding public key must be available with an extension of .pub at the same location:

(If this file does not already exist, it will be created by ssh-keygen during provisioning.)

29.29 Managing SSH host keys

TPA generates a set of SSH host keys while provisioning a cluster. These keys are stored in the cluster directory, under the hostkeys subdirectory.
These host keys are automatically installed into /etc/ssh on AWS EC2 instances and Docker containers.

By default, these host keys aren't installed on bare instances, but you can set manage_ssh_hostkeys to enable it:

You must initially set up known_hosts in your cluster directory with correct entries, as described in the documentation for bare instances. TPA
replaces the host keys during deployment.

The manage_ssh_hostkeys setting is meaningful only for bare instances. The generated host keys are installed on all other instances.

known_hosts

TPA adds entries for every host and its public host keys to the global ssh_known_hosts file on every instance in the cluster. This way, they can ssh to
each other without host key verification prompts, regardless of whether they have manage_ssh_hostkeys set.

29.30 Postgres source installation

TPA will compile and install Postgres from source if you set postgres_installation_method to src . This feature is meant for use in
development and testing, and allows you to switch between packaged and source builds within an identically-configured cluster.

Even here, you do not need to change the defaults, which will give you a working cluster with debugging enabled.

Git repository

ssh_key_file: ~/.ssh/id_rsa

instances:
- Name:
one

…
 platform: bare
 vars:
 manage_ssh_hostkeys: yes

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 139

The default settings will build and install Postgres from the community Git repository, using the REL_xx_STABLE branch corresponding to your
postgres_version . You can specify a different repository or branch (any valid git reference) as follows:

The default git.postgresql.org repository does not require authentication, but if necessary, you can use SSH agent forwarding or an HTTPS
username/password to authenticate to other repositories.

The repository will be cloned into postgres_src_dir (default: /opt/postgres/src/postgres), or updated with git pull if the directory
already exists (e.g., if you are re-deploying).

Build customisation

By default, TPA will configure and build Postgres with debugging enabled and sensible defaults in postgres_build_dir (default:
/opt/postgres/build/postgres). You can change various settings to customise the build:

This will run ./configure with the options in postgres_extra_configure_opts and the settings from
postgres_extra_configure_env defined in the environment. Some options are specified by default (e.g., --with-debug), but can be

negated by the corresponding --disable-xxx or --without-xxx options. Building --without-openssl is not supported.

If required, you can also change the following default build commands:

Run tpaexec deploy … --skip-tags build-clean in order to reuse the build directory when doing repeated deploys. (Otherwise the old
build directory is emptied before starting the build.) You can also configure local source directories to speed up your development builds.

Whenever you run a source build, Postgres will be restarted.

Additional components

Even if you install Postgres from packages, you can compile and install extensions from source. There's a separate page about how to configure
install_from_source .

cluster_vars:
 postgres_git_url: git://git.postgresql.org/git/postgresql.git
 postgres_git_ref: REL_12_STABLE

cluster_vars:
 postgres_extra_configure_env:
 CFLAGS: "-O3"
 postgres_extra_configure_opts:
 - --with-
llvm
 - --disable-tap-
tests

cluster_vars:
 postgres_make_command: "make -
s"
 postgres_build_targets:
 - "all"
 - "-C contrib all"
 postgres_install_targets:
 - "install"
 - "-C contrib
install"

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 140

If you install Postgres from source, however, you will need to install extensions from source as well, because the extension packages typically depend on
the Postgres package(s) being installed.

Package installation

There's a separate page about installing Postgres and Postgres-related packages with postgres_installation_method: pkg (the default).

29.31 Installing packages

TPA installs a batch of non-Postgres-related packages early during the deployment, then all Postgres-related packages together, and then packages for
optional components separately. These instructions are for installing packages like sysstat or strace, which have no dependency on Postgres packages.

You can add entries to packages under cluster_vars or a particular instance's vars in config.yml :

In this example, TPA installs its own list of default_packages , the packages listed under packages.common on every instance, and the
remaining distribution-specific packages based on the distribution the instance is running. If any of these packages isn't available, the deployment fails.

Don't list any packages that depend on Postgres. Use extra_postgres_packages instead.

Optional packages

You can specify a list of optional_packages that can be installed. They will be installed if they're available and ignored otherwise. As with the other
settings, the common entries apply to every instance, whereas any other lists apply only to instances running the relevant distribution.

cluster_vars:
 packages:
 common:
 - pkg1
 - pkg2
 Debian:
 - debpkg1
 RedHat:
 -
rhpkg1
 -
rhpkg2
 Ubuntu:
 -
ubpkg1
 SLES:
 -
slespkg1

optional_packages:
 common:
 - pkg1
 - pkg2
 Debian:
 - debpkg4

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 141

Removing packages

You can specify a list of unwanted_packages to remove if they're installed.

29.32 Running initdb

TPA first creates postgres_data_dir if it doesn't exist and ensures it has the correct ownership, permissions, and SELinux context. Then, unless
the directory already contains a VERSION file, it runs initdb to initialize postgres_data_dir .

You can use the pre-initdb hook to execute tasks before postgres_data_dir is created and initdb is run. If the hook initializes
postgres_data_dir , TPA finds the VERSION file and therefore doesn't run initdb .

You can optionally set postgres_initdb_opts to a list of options to pass to initdb :

We recommend always including the --data-checksums option, which is included by default.

When running initdb , TPA sets TZ=UTC in the environment and sets LC_ALL to the postgres_locale you specify.

Separate configuration directory

By default, postgres_conf_dir is equal to postgres_data_dir , and the Postgres configuration files (postgresql.conf ,
pg_ident.conf , pg_hba.conf , and the include files in conf.d) are created in the data directory. If you change postgres_conf_dir , after

running initdb , TPA moves the generated configuration files to the new location.

29.33 Installing Postgres-related packages

TPA installs a batch of non-Postgres-related packages early during the deployment, then all Postgres-related packages together, and then packages for
optional components separately. This page is about installing packages like pglogical that depend on Postgres itself.

To install extra packages that depend on Postgres (e.g., Postgis), list them under extra_postgres_packages in cluster_vars or a particular
instance's vars in config.yml:

unwanted_packages:
 common:
 - badpkg1
 Ubuntu:
 - badpkg2

cluster_vars:
 postgres_locale: de_DE.UTF-8
 postgres_initdb_opts:
 - --data-
checksums

cluster_vars:
 extra_postgres_packages:

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 142

The packages listed under packages.common will be installed on every instance, together with the default list of Postgres packages, and any
distribution-specific packages you specify.

There's a separate page about compiling and installing Postgres from source.

29.34 SSL Certificates

If you set enable_pg_backup_api: true in config.yml or use the --enable-pg-backup-api command line option during configure,
instances with the barman role will install pg-backup-api and set up an apache proxy for client cert authentication. This apache proxy will use an SSL
CA generated for the cluster to generate its server and client certificates.

pg-backup-api will be installed via packages by default, but you can also install from a git branch or a local directory. See configure-source.md and
install_from_source.md for more details.

Run pg-backup-api status on the barman node running pg-backup-api - if you get "OK" back, the pg-backup-api service is running.

To test that the proxy is working, run

curl --cert /etc/tpa/pg-backup-api/pg-backup-user.crt \
 --key /etc/tpa/pg-backup-api/pg-backup-user.key \
 -X GET https://{hostname}/diagnose

If it's working, you'll get a large json output. You can compare this with the output of barman diagnose , they should match exactly.

The root certificate will be copied to /etc/tpa/pg-backup-api/ by default.

A client certificate and key (pg-backup-user.crt and pg-backup-user.key) will be generated for testing (through tpaexec test) or
command line from the barman host. See Testing.

An apache proxy server certificate and key (pg-backup-api.crt and pg-backup-api.key) will also be generated

Each service needing to query the api will need to generate its own client certificate separately. PEM agent role, for instance, generates a client
certificate during it's setup when both --enable-pem and --enable-pg-backup-api (or config.yml equivalent) are used.

 common:
 - postgres-pkg1
 - postgres-pkg2
 Debian:
 - postgres-deb-pkg1
 RedHat:
 - postgres11-
rhpkg1
 - postgres11-
rhpkg2
 Ubuntu:
 -
ubpkg1
 SLES:
 -
slespkg1

cluster_vars:
 enable_pg_backup_api: true

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 143

29.35 Setting sysctl values

By default, TPA sets various sysctl values on target instances, and includes them in /etc/sysctl.conf so that they persist across reboots.

You can optionally specify your own values in sysctl_values :

Any values you specify will take precedence over TPA's default values for that variable (if any). The settings will first be added to sysctl.conf line-
by-line, and finally loaded with sysctl -p .

Docker and lxd instances do not support setting sysctls, so TPA will skip this step altogether for those platforms.

29.36 Creating Postgres databases

To create Postgres databases during deployment, add entries to the list of postgres_databases under cluster_vars or a particular instance's
vars in config.yml:

The example above would create two databases (apart from any databases that TPA itself decides to create, such as bdr_database).

Each entry must specify the name of the database to create. All other attributes are optional.

The owner is postgres by default, but you can set it to any valid username (the users in postgres_users will have been created by this time).

The encoding , lc_collate , and lc_ctype values default to the postgres_locale set at the time of running initdb (the default is to use
the target system's LC_ALL or LANG setting). If you are creating a database with non-default locale settings, you will also need to specify template:
template0 .

cluster_vars:
 sysctl_values:
 kernel.core_pattern: core.%e.%p.%t
 vm.dirty_bytes: 4294967296
 vm.zone_reclaim_mode: 0

cluster_vars:
 postgres_databases:
 - name: exampledb

 - name: complexdb
 owner: example
 encoding: UTF8
 lc_collate: de_DE.UTF-8
 lc_ctype: de_DE.UTF-8
 template: template0
 extensions:
 - name:
hstore
 - name:
dblink
 languages:
 - name:
plperl
 - name:
plpython
 tablespace: exampletablespace

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 144

You can optionally specify the default tablespace for a database; the tablespace must already exist (see postgres_tablespaces).

You can specify optional lists of extensions and languages to create within each database (in addition to any extensions or languages inherited
from the template database). Any packages required must be installed already, for example by including them in extra_postgres_packages .

TPA will not drop existing databases that are not mentioned in postgres_databases , and it may create additional databases if required (e.g., for
BDR).

29.37 Creating Postgres tablespaces

To create Postgres tablespaces during deployment, define their names and locations in postgres_tablespaces under cluster_vars or a
particular instance's vars in config.yml.

If you define volumes with volume_for: postgres_tablespace set and a tablespace_name defined, they will be added as default entries
to postgres_tablespaces .

The example above would create two tablespaces: explicit (at /some/path) and implicit (at /opt/postgres/tablespaces/implicit/tablespace_data by
default, unless you specify a different mountpoint for the volume).

Every postgres_tablespace volume must have tablespace_name defined; the tablespace location will be derived from the volume's
mountpoint.

Every entry in postgres_tablespaces must specify a tablespace name (as the key) and its location . If you are specifying tablespace locations
explicitly, do not put tablespaces inside PGDATA, and do not use any volume mountpoint directly as a tablespace location (lost+found will confuse
some tools into thinking the directory is not empty).

By default, the tablespace owner is postgres , but you can set it to any valid username (the users in postgres_users will have been created by
this time).

Streaming replicas must have the same postgres_tablespace volumes and postgres_tablespaces setting as their upstream instance

You can set the default tablespace for a database in postgres_databases .

29.38 postgresql.conf

cluster_vars:
 postgres_tablespaces:
 explicit:
 location: /some/path

instances:
- Name: example

…
 volumes:
 - device_name: /dev/xvdh

…
 vars:
 volume_for:
postgres_tablespace
 tablespace_name:
implicit

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 145

TPA creates a conf.d directory with various .conf files under it, and uses include_dir in the main postgresql.conf to use these
additional configuration files.

The Postgres configuration files (postgresql.conf, pg_ident.conf, and pg_hba.conf) and the included files under conf.d are always stored in
postgres_conf_dir . This is the same as postgres_data_dir by default, but you can set it to a different location if you wish to keep the

configuration separate from the data directory.

The main configuration mechanism is to set variables directly:

TPA splits the configuration up into multiple files. The two main files are 0000-tpa.conf and 0001-tpa_restart.conf . These contain settings
that require a server reload or restart to change, respectively. During deployment, TPA will write any changes to the correct file and reload or restart
Postgres as required.

TPA may use other files in certain circumstances (e.g., to configure optional extensions), but you do not ordinarily need to care where exactly a given
parameter is set.

You should never edit any of the files under conf.d , because the changes may be overwritten when you next run tpaexec deploy .

postgres_conf_settings

TPA provides variables like temp_buffers and maintenance_work_mem that you can set directly for many, but not all, available postgresql.conf
settings.

You can use postgres_conf_settings to set any parameters, whether recognised by TPA or not. You need to quote the value exactly as it would
appear in postgresql.conf :

This is most useful with settings that TPA does not recognise natively, but you can use it for any parameter (e.g., effective_cache_size can be
set as a variable, but authentication_timeout cannot).

These settings will be written to conf.d/9900-role-settings.conf , and therefore take priority over variables set in any other way.

If you make changes to values under postgres_conf_settings , TPA has no way to know whether the a reload is sufficient to effect the changes,
or if a restart is required. Therefore it will always restart the server to activate the changes. This is why it's always preferable to use variables directly
whenever possible.

cluster_vars:
 temp_buffers: 16MB
 log_connections: on
 autovacuum_vacuum_cost_limit: -1
 effective_cache_size:
4GB
 max_connections: 300
 max_wal_senders: 32

cluster_vars:
 effective_cache_size:
2GB
 postgres_conf_settings:
 effective_cache_size:
4GB
 authentication_timeout: 1min
 synchronous_standby_names: >-
 'any 2 ("first", "second",
"third")'
 bdr.global_lock_statement_timeout:
60s

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 146

shared_buffers

By default, TPA will set shared_buffers to 25% of the available memory (this is just a rule of thumb, not a recommendation). You can override this
default by setting shared_buffers_ratio: 0.35 to use a different proportion, or by setting shared_buffers_mb: 796 to a specific
number of MB, or by specifying an exact value directly, e.g., shared_buffers: "2GB" .

effective_cache_size

By default, TPA will set effective_cache_size to 50% of the available memory. You can override this default by setting
effective_cache_size_ratio: 0.35 to use a different proportion, or by setting effective_cache_size_mb: 796 to a specific number

of MB, or by specifying an exact value directly, e.g., effective_cache_size: "8GB" .

shared_preload_libraries

TPA maintains an internal list of extensions that require entries in shared_preload_libraries to work, and if you include any such extensions in
postgres_extensions , it will automatically update shared_preload_libraries for you.

If you are using unrecognised extensions that require preloading, you can add them to preload_extensions :

Now if you add myext to postgres_extensions , shared_preload_libraries will include myext .

By default, shared_preload_libraries is set in conf.d/8888-shared_preload_libraries.conf .

Setting shared_preload_libraries directly as a variable is not supported. You should not normally need to set it, but if unavoidable, you can set
a fully-quoted value under postgres_conf_settings . In this case, the value is set in conf.d/9900-
tpa_postgres_conf_settings.conf .

Postgres log

The default log file is defined as /var/log/postgres/postgres.log . If you need to change that, you can now set postgres_log_file in your
config.yml:

TPA will take care of creating the directories and rotate the log when needed.

Making changes by hand

cluster_vars:
 preload_extensions:
 - myext
 -
otherext

cluster_vars:
 [...]
 postgres_log_file: '/srv/fantastic_logs/pg_server.log'

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 147

There are two ways you can override anything in the TPA-generated configuration.

The first (and recommended) option is to use ALTER SYSTEM , which always takes precedence over anything in the configuration files:

You can also edit conf.d/9999-override.conf :

All other files under conf.d are subject to be overwritten during deployment if the configuration changes, but TPA will never change 9999-
override.conf after initially creating the empty file.

Depending on which settings you change, you may need to execute SELECT pg_reload_conf() or restart the server for the changes to take effect.

Generating postgresql.conf from scratch

By default, TPA will leave the default (i.e., initdb -generated) postgresql.conf file alone other than adding the include_dir . You should not
ordinarily need to override this behaviour, but you can set postgres_conf_template to do so:

Now the templates/pgconf.j2 in your cluster directory will be used to generate postgresql.conf.

29.39 pg_hba.conf

The Postgres documentation explains the various options available in pg_hba.conf .

By default, TPA will generate a sensible pg_hba.conf for your cluster, to allow replication between instances, and connections from authenticated
clients.

You can add entries to the default configuration by providing a list of postgres_hba_settings :

You can override the default local all all peer line in pg_hba.conf by setting postgres_hba_local_auth_method: md5 .

If you don't want any of the default entries, you can change postgres_hba_template :

ALTER SYSTEM SET bdr.global_lock_statement_timeout TO '60s';

$ echo "bdr.global_lock_statement_timeout='60s'" >> conf.d/9999-override.conf

cluster_vars:
 postgres_conf_template: 'pgconf.j2'

cluster_vars:
 postgres_hba_settings:
 - "# let authenticated users connect from
anywhere"
 - hostssl all all 0.0.0.0/0 scram-sha-
256

cluster_vars:
 postgres_hba_template: pg_hba.lines.j2
 postgres_hba_settings:
 - "# my lines of text"
 - "# and nothing but my
lines"

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 148

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

You can even create templates/my_hba.j2 in your cluster directory and set:

If you just want to leave the existing pg_hba.conf alone, you can do that too:

Although it is possible to configure pg_hba.conf to be different on different instances, we generally recommend a uniform configuration, so as to
avoid problems with access and replication after any topology-changing events such as switchovers and failovers.

29.40 pg_ident.conf

You should not normally need to change pg_ident.conf , and by default, TPA will not modify it.

You can set postgres_ident_template to replace pg_ident.conf with whatever content you like.

You will also need to create templates/ident.j2 in the cluster directory:

{% for u in ['unixuser1', 'unixuser2'] %}
mymap {{ u }} dbusername
{% endfor %}

29.41 Configuring .pgpass

TPA will create ~postgres/.pgpass by default with the passwords for postgres and repmgr in it, for use between cluster instances. You can
set pgpass_users to create entries for a different list of users.

You can also include the postgres/pgpass role from hook scripts to create your own .pgpass file:

 - "# …not even any
clients!"
 - hostssl all all 0.0.0.0/0
reject

cluster_vars:
 postgres_hba_template: my_hba.j2

cluster_vars:
 postgres_hba_template: ''

cluster_vars:
 pg_ident_template:
ident.j2

- include_role: name=postgres/pgpass
 vars:
 pgpassfile: ~otheruser/.pgpass
 pgpass_owner: otheruser
 pgpass_group: somegroup
 pgpass_users:
 - xyzuser
 - pqruser

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 149

29.42 The postgres Unix user

This page documents how the postgres user and its home directory are configured.

There's a separate page about how to create Postgres users in the database.

Shell configuration

TPA will install a .bashrc file and ensure that it's also included by the .profile or .bash_profile files.

It will set a prompt that includes the username and hostname and working directory, and ensure that postgres_bin_dir in in the PATH , and set
PGDATA to the location of postgres_data_dir .

You can optionally specify extra_bashrc_lines to append arbitrary lines to .bashrc . (Use the YAML multi-line string syntax >- to avoid
having to worry about quoting and escaping shell metacharacters.)

It will edit sudoers to allow sudo systemctl start/stop/reload/restart/status postgres , and also change ulimits to allow
unlimited core dumps and raise the file descriptor limits.

SSH keys

TPA will use ssh-keygen to generate and install an SSH keypair for the postgres user, and edit .ssh/authorized_keys so that the instances in
the cluster can ssh to each other as postgres .

TLS certificates

By default, TPA will generate a private key and a self-signed TLS certificate for use within the cluster. This is sufficient to ensure that traffic between
clients and server is encrypted in transit. Should you wish to use your own certificate signing infrastructure you may replace these after deployment is
complete, or replace them during deployment using a hook.

Username

The postgres_user and postgres_group settings (both postgres by default) are used consistently everywhere. You can change them if you
need to run Postgres as a different user for some reason.

cluster_vars:
 extra_bashrc_lines:
 - alias la=ls\ -
la
 -
>-
 export
PATH="$PATH":/some/other/dir

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 150

29.43 Creating Postgres users

To create Postgres users during deployment, add entries to the list of postgres_users under cluster_vars or a particular instance's vars in
config.yml:

The example above would create two users (apart from any users that TPA itself decides to create, such as repmgr or barman).

Each entry must specify the username to create.

Any roles in the granted_roles list will be granted to the newly-created user.

The role_attrs list may contain certain CREATE ROLE options such as [NO]SUPERUSER , [NO]CREATEDB , [NO]LOGIN (to create a user or a
role) etc.

Password generation

By default, TPA will generate a random password for the user, and store it in a vault-encrypted variable named <username>_password in the
cluster's inventory. You can retrieve the value later:

You cannot explicitly specify a password in config.yml, but you can store a different <username>_password in the inventory instead:

If you don't want the user to have a password at all, you can set generate_password: false .

cluster_vars:
 postgres_users:
 - username: example

 - username: otheruser
 generate_password: true
 role_attrs:
 - superuser
 -
replication
 granted_roles:
 - r1
 - r2

$ tpaexec show-password ~/clusters/speedy example
beePh~iez6lie4thi5KaiG%eghaeT]ai

$ tpaexec store-password ~/clusters/speedy example --
random
$ tpaexec show-password ~/clusters/speedy example
)>tkc}}k1y4&epaJ?;NJ:l'uT{C7D*<p
$ tpaexec store-password ~/clusters/speedy
example
Password:
$ tpaexec show-password ~/clusters/speedy example
terrible insecure
password
$

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 151

https://www.postgresql.org/docs/12/sql-createrole.html

29.44 tpaexec archive-logs

To create a log directory and archive logs from instances, run

This will create a logs/YYYYMMDDHHMMss/ directory in your cluster directory and download a tar.gz archive of all the files under /var/log on each
instance in the cluster into a separate directory.

Prerequisites

If you have an existing cluster you can run tpaexec archive-logs immediately. But if you are configuring a new cluster, you must at least
provision the cluster. You will get more logs if you also deploy the cluster.

Quickstart

tpaexec archive-logs <cluster-
dir>

[tpa]$ tpaexec archive-logs
~/clusters/speedy

PLAY [Prepare local host archive]

TASK [Collect facts]
**
ok:
[localhost]

TASK [Set time stamp]

ok:
[localhost]

TASK [Create local log archive directory]

changed:
[localhost]

PLAY [Archive log files from target instances]

...

TASK [Remove remote archives]

changed: [kinship]
changed: [khaki]
changed: [uncivil]
changed:
[urchin]

PLAY RECAP **
khaki : ok=3 changed=3 unreachable=0
failed=0

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 152

You can append -v , -vv , etc. to the command if you want more verbose output.

Generated files

You can find the logs for each instance under the cluster directory:

Archive contents example:

kinship : ok=3 changed=3 unreachable=0
failed=0
localhost : ok=3 changed=1 unreachable=0
failed=0
uncivil : ok=3 changed=3 unreachable=0
failed=0
urchin : ok=3 changed=3 unreachable=0
failed=0

~/clusters/speedy/logs/
--
220220306T185049
 |-- khaki-logs-
20220306T185049.tar.gz
 |-- kinship-logs-
20220306T185049.tar.gz
 |-- uncivil-logs-
20220306T185049.tar.gz
 -- urchin-logs-20220306T185049.tar.gz

khaki-logs
|--
anaconda
| |-- anaconda.log
| |--
dbus.log
| |-- dnf.librepo.log
| |-- hawkey.log
| |--
journal.log
| |-- ks-script-
ipdkisn0.log
| |-- ks-script-
jr03uzns.log
| |-- ks-script-
mh2iidvh.log
| |-- lvm.log
| |-- packaging.log
| |--
program.log
| |--
storage.log
| |--
syslog
| -- X.log
|-- btmp
|-- dnf.librepo.log
-- dnf.log
dnf.rpm.log
-- hawkey.log
-- lastlog
-- private

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 153

29.45 tpaexec download-packages

The purpose of the downloader is to provide the packages required to do a full installation of a TPA cluster from an existing configuration. This is useful
when you want to ship packages to secure clusters that do not have internet access, or avoid downloading packages repeatedly for test clusters.

The downloader will download the full dependency tree of packages required, and the resulting package repository will include metadata files for the
target distribution package manager, so can be used exclusively to build clusters. At this time package managers Apt and YUM are supported.

Note

The download-packages feature requires Docker to be installed on the TPA host. This is because the downloader operates by creating a
container of the target operating system and uses that system's package manager to resolve dependencies and download all necessary
packages. The required Docker setup for download-packages is the same as that for using Docker as a deployment platform.

Usage

An existing cluster configuration needs to exist which can be achieved using the tpaexec configure command. No specific options are required to
use the downloader. See configuring a cluster .

Execute the download-packages subcommand to start the download process. Provide the OS and OS version that should be used by the downloader.

tpaexec download-packages cluster-dir --os RedHat --os-version 8

This can also be expressed as a specific docker image. It is strongly recommended that you use one of the tpa images prefixed like the example below.

tpaexec download-packages cluster-dir --docker-image tpa/redhat:8

The downloader will place files downloaded in the directory local-repo by default. It is possible to download to alternative directory by using the
option --download-dir path .

Using the result

The contents of the local-repo directory is populated with a structure determined by ansible according to the OS contained in the docker image. For
example, the docker image tpa/redhat:8 would have the following:

cluster-dir/
`-- local-repo
 `-- RedHat
 `-- 8
 |-- *.rpm
 `-- repodata
 `-- *repodata-files*

|--
tpaexec.log
-- wtmp

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 154

You can use this in the cluster as is or copy it to a target control node. See recommendations for installing to an air-gapped environment. A local-repo
will be detected and used automatically by TPA.

Cleaning up failed downloader container

If there is an error during the download process, the command will leave behind the downloader container running to help with debugging. For instance
you may want to log in to the failed downloader container to inspect logs or networking. Downloader container is typically named $cluster_name-
downloader unless it exceeds the allowed limit of 64 characters for the container name. You can check for the exact name by running docker ps to
list the running containers and look for a container name that matches your cluster name. In most cases you can log in to the running container by
executing docker exec -it $cluster_name-downloader /bin/bash . After the inspection, you can clean up the left over container by
running the download-packages command with --tags cleanup . For example:

tpaexec download-packages cluster-dir --docker-image tpa/redhat:8 --tags cleanup

29.46 TPA custom commands

You can define custom commands that perform tasks specific to your environment on the instances in a TPA cluster.

You can use this mechanism to automate any processes that apply to your cluster. These commands can be invoked against your cluster directory, like
any built-in cluster management command. Having a uniform way to define and run such processes reduces the likelihood of errors caused by
misunderstandings and operator error, or process documentation that was correct in the past, but has drifted away from reality since then.

Writing Ansible playbooks means that you can implement arbitrarily complex tasks; following the custom command conventions means you can take
advantage of various facts that are set based on your config.yml and the cluster discovery tasks that TPA performs, and not have to think about details
like connections, authentication, and other basic features.

This makes it much easier to write resilient, idempotent commands in a way that ad-hoc shell scripts (could be, but) usually aren't.

Quickstart

Create commands/mycmd.yml within your cluster directory
Run tpaexec mycmd /path/to/cluster

Example

Here's an example of a command that runs a single command on all instances in the cluster. Depending on the use-case, you can write commands that
target different hosts (e.g., hosts: role_postgres to run only on Postgres instances), or run additional tasks and evaluate conditions to
determine exactly what to do.

Always start with
this
- import_playbook: "{{ tpa_dir }}/architectures/lib/init.yml"
 tags:
always

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 155

29.47 TPA custom tests

You can easily define in-depth tests specific to your environment and application to augment TPA's builtin tests.

We strongly recommend writing tests for any tasks, no matter how simple, that you would run on your cluster to reassure yourself that everything is
working as you expect. Having a uniform and repeatable way to run such tests ensures that you don't miss out on anything important, whether you're
dealing with a crisis or just doing routine cluster management.

If you write tests that target cluster instances by their configured role (or other properties), you can be sure that all applicable tests will be run on the
right instances. No need to look up or remember how many replicas to check the replication status on, nor which servers are running pgbouncer, or any
other such details that are an invitation to making mistakes when you are checking things by hand.

Tests must not make any significant changes to the cluster. If it's not something you would think of doing on a production server, it probably shouldn't be
in a test.

Quickstart

Create tests/mytest.yml within your cluster directory
Run tpaexec test /path/to/cluster mytest

You can also create tests in some other location and use them across clusters with the --include-tests-from /other/path option to
tpaexec test .

(Run tpaexec help test for usage information.)

Example

Here's how to write a test that is executed on all Postgres instances (note hosts: role_postgres instead of hosts: all).

You can use arbitrary Ansible tasks to collect information from the cluster and perform tests. Just write tasks that will fail if some expectation is not met
(assert , fail … when , etc.).

- name: Perform custom command
tasks
 hosts:
all
 tasks:
 - name: Display last five lines of
syslog
 command: tail -5
/var/log/syslog
 become_user: root
 become: yes

- name: Perform my custom
tests
 hosts: role_postgres
 tasks:

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 156

You can use the builtin output.yml as shown above to record arbitrary test output in a timestamped test directory in your cluster directory.

Each test must be a complete Ansible playbook (i.e., a list of plays, not just a list of tasks). It will be imported and executed after the basic TPA setup
tasks.

Destructive tests

Tests should not, by default, make any significant changes to a cluster. (Even if they do something like creating a table to test replication, they must be
careful to clean up after themselves.)

Any test that makes changes to a cluster that would be unacceptable on a production cluster MUST be marked as destructive . These may be tests
that you run only in development, or during the initial cluster "burn in" process.

You can define "destructive" tests by setting destructive: yes when including prereqs.yml in your test:

 # Always start with
this
 - include_role:
 name: test
 tasks_from:
prereqs.yml

 # Make sure that the PGDATA/PG_VERSION file exists. (This is just
a
 # simplified example, not something that actually needs
testing.)
 - name: Perform simple
test
 command: "test -f {{ postgres_data_dir
}}/PG_VERSION"
 become_user: "{{ postgres_user
}}"
 become: yes

 - name: Run
pg_controldata
 command: >
 {{ postgres_bin_dir }}/pg_controldata {{ postgres_data_dir
}}
 register:
controldata
 become_user: "{{ postgres_user
}}"
 become: yes

 # Write output to
clusterdir/$timestamp/$hostname/pg_controldata.txt
 - name: Record pg_controldata
output
 include_role:
 name: test
 tasks_from: output.yml
 vars:
 output_file: pg_controldata.txt
 content: |
 {{ controldata.stdout }}

- hosts:
…

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 157

If someone then runs tpaexec test /path/to/cluster mytest , they will get an error asking them to confirm execution using the --
destroy-this-cluster option.

(Note: using --destroy-this-cluster signifies an awareness of the risk of running the command. It does not guarantee that the test will actually
destroy the cluster.)

29.48 Locale

For some platform images and environments, you might want to set the region and language settings.

By default, tpaexec installs the en_US.UTF-8 locale system files. You can set the desired locale in your config.yml :

To see the supported locales, use the following command:

localectl list-locales

Alternatively, on Debian or Ubuntu, look at the contents of the file /etc/locales.defs .

29.49 Patroni cluster management commands

You can use Patroni as a single-master failover manager with the M1 architecture using the following command options:

tpaexec configure cluster_name -a M1 --enable-patroni --postgresql 14

You can also use Patroni as a failover manager by setting the following config.yml option:

If deploying to RedHat, you must also add the PGDG repository to your yum repository list in config.yml :

TPA configure adds 3 etcd nodes and 2 haproxy nodes. Etcd is used for the Distributed Configuration Store (DCS). Patroni supports other DCS
backends, but they aren't currently supported by EDB or TPA.

TPA uses Patroni's feature of converting an existing PostgreSQL standalone server. This mechanism allows for TPA to initialize and manage
configuration. Once a single PostgreSQL server and database is created, Patroni creates replicas and configures replication. TPA then removes any

 tasks:
 - include_role:
 name: test
 tasks_from:
prereqs.yml
 vars:
 destructive: yes

user_locale: en_GB.UTF-8

cluster_vars:
 failover_manager: patroni

cluster_vars:
 yum_repository_list:
 - PGDG

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 158

Postgres configuration files used during setup.

Once this is set up, you can continue to manage Postgres using TPA and settings in config.yml for the cluster. You can also use Patroni interfaces,
such as the command line patronictl and the REST API, but we recommend using TPA methods wherever possible.

Configuration options

You can use these configuration variables to control certain behaviors when deploying Patroni in TPA.

Variable Default
value

Description

patroni_super_user postgres User to create in Postgres for superuser role.

patroni_replication_use
r

replicator Username to create in Postgres for replication role.

patroni_restapi_user patroni Username to configure for the Patroni REST API.

patroni_rewind_user rewind Username to create in postgres for pg_rewind function.

patroni_installation_me
thod

pkg Install Patroni from packages or source (for example, Git repo or local source directory if Docker).

patroni_ssl_enabled no Whether to enable SSL for REST API and ctl connection. Uses the cluster SSL cert and CA if
available.

patroni_rewind_enabled yes Whether to enable Postgres rewind; creates a user defined by patroni_rewind_user and adds
config section.

patroni_watchdog_enable
d

no Whether to configure the kernel watchdog for additional split-brain prevention.

patroni_dcs etcd The backend to use for the DCS. Currently, the only option is etcd.

patroni_listen_port 8008 REST API TCP port number.

patroni_conf_settings {}

A structured data object with overrides for Patroni configuration.
Partial data can be provided and will be merged with the generated config.
Be careful to not override values that are generated based on instance information known at
runtime.

patroni_dynamic_conf_se
ttings

{}
Optional structured data just for DCS settings. This will be merged onto
patroni_conf_settings .

patroni_repl_max_lag None
This is used in the haproxy backend health check only when
haproxy_read_only_load_balancer_enabled is true.

See REST API documentation for possible values for /replica?lag .

Patroni configuration file settings

Configuration for Patroni is built from three layers, starting with defaults set by the Patroni daemon, config loaded from the DCS, and finally from local
configuration. The last can be controlled from either configuration file and overrides by way of the environment. TPA controls the configuration file, and
values are built up in this order.

DCS config to be sent to the API and stored in the bootstrap section of the config file:

TPA vars for postgres are loaded into the DCS settings. See postgresql.conf.md. Some features aren't supported. See notes that follow.
Patroni defaults for DCS settings.
User-supplied defaults in patroni_dynamic_conf_settings . If you want to override any DCS settings, you can do that here.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 159

https://patroni.readthedocs.io/en/latest/rest_api.html#health-check-endpoints

Local config stored in the YAML configuration file:

bootstrap.dcs loaded from previous steps.
Configuration enabled by feature flags, such as patroni_ssl_enabled . See the table in Configuration options.
Then, finally, overloaded from user-supplied settings, the patroni_conf_settings option. If you want to change or add a configuration not
controlled by a feature flag, then this is the best place to do it.

Configuration is merged on top of the configuration generated by TPA from cluster information, such as IP addresses, port numbers, cluster roles, and so
on. Use caution in what you override, as this might affect the stable operation of the cluster.

As Patroni stores all Postgres configuration in the DCS and controls how and when this is distributed to Postgres, some features of TPA are incompatible
with Patroni:

You can't change the template used to generate postgresql.conf with the setting postgres_conf_template .
You can't change the location of Postgres config files with the setting postgres_conf_dir .

Patroni configuration in TPA config.yml

You can override single values:

You can also override full blocks (with an example from Patroni documentation):

If you want to negate a value or section that's present in the default TPA config vars, you can set the value to null . This causes Patroni to ignore this
section when loading the config file.

For example, the default TPA config for log is:

To turn off logging, add this to config.yml :

TPA provides this minimal set of tools for managing Patroni clusters.

cluster_vars:
 patroni_conf_settings:
 bootstrap:
 dcs:
 ttl: 120

cluster_vars:
 patroni_conf_settings:
 restapi:
 http_extra_headers:
 'X-Frame-Options': 'SAMEORIGIN'
 'X-XSS-Protection': '1;
mode=block'
 'X-Content-Type-Options': 'nosniff'
 https_extra_headers:
 'Strict-Transport-Security': 'max-age=31536000; includeSubDomains'

log:
 dir:
/var/log/patroni

cluster_vars:
 patroni_conf_settings:
 log: null

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 160

Status

To see the current status of the TPA cluster according to Patroni, run:

tpaexec status cluster_name

Switchover

To perform a switchover to a replica node (for example, to perform maintenance) run:

tpaexec switchover cluster_name <new_primary>

The new_primary argument must be the name of an existing cluster node that's currently running as a healthy replica. Checks are performed to
ensure this is true before a switchover is performed.

Once a switchover has been performed, we recommend that you run deploy and test to ensure a healthy cluster:

tpaexec deploy cluster_name
tpaexec test cluster_name

TPA detects the current role of nodes during deploy regardless of what config.yml contains, for example, if a different node is the leader.

29.50 Adding Postgres extensions

Default Postgres extensions

By default, TPA adds the following extensions to every Postgres database (and if needed, automatically adds the corresponding entries into shared
preload libraries)

pg_stat_statements
pg_freespacemap
pg_visibility
pageinspect
pgstattuple

User defined extensions

Additional extensions can be configured within config.yml , by specifying the extension name, any required shared preload entries and the package
containing the extension.

Adding the vector extension through configuration
Specifying extensions for configured databases
Including shared preload entries for extensions
Installing Postgres-related packages

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 161

TPA recognized extensions

The following list of extensions only require the extension name to be added in config.yml (either to extra_postgres_extensions OR to the
extensions list of a database specified in postgres_databases) and TPA will automatically include the correct package and any required

entries to shared_preload_libraries.

edb_pg_tuner
query_advisor
edb_wait_states
sql_profiler
autocluster
refdata

29.51 tpaexec deprovision

Deprovision destroys a cluster and associated resources.

For a cluster using the aws platform, it will remove the instances and all keypairs, policies, volumes, security groups, route tables, VPC subnets,
internet gateways and VPCs which were set up for the cluster.

For a cluster using the docker platform, it will remove the containers, any ccache directories which were set up for source builds in the containers,
and any docker networks which were set up for the cluster.

For all platforms, it will remove all the files created locally by tpaexec provision , including ssh keys, stored passwords, ansible inventory, and
logs.

29.52 tpaexec info

You can use the info command to output information about the TPA installation. Providing this information is valuable for troubleshooting.

Usage

Run tpaexec info

Subcommands

tpaexec info version

Displays current TPA version

tpaexec info platforms

Displays available deployment platforms

tpaexec info architectures

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 162

Displays available deployment architectures

tpaexec info platforms/<name>

Displays information about a particular platform

tpaexec info architectures/<name>

Displays information about a particular architecture

Example Output

The tpaexec info command outputs the following:

29.53 tpaexec reconfigure

The tpaexec reconfigure command reads config.yml and generates a revised version of it that changes the cluster in various ways according to
its arguments.

Arguments

As with other tpaexec commands, the cluster directory must always be given.

Changing a cluster's architecture

The following arguments enable the cluster's architecture to be changed:

--architecture <architecture> (required) The new architecture for the cluster. At present the only supported architecture is PGD-
Always-ON

--pgd-proxy-routing <global|local> (required) How PGD-Proxy is to route connections. See the PGD-Always-ON documentation for
more information about the meaning of this argument.

--edb-repositories <repositories> (optional) A space-separated list of EDB package repositories. It is usually unnecessary to specify
this; tpaexec configure will choose a suitable repository based on the postgres flavour in use in the cluster.

TPAexec 23.29
tpaexec=/opt/EDB/TPA/bin/tpaexec
TPA_DIR=/opt/EDB/TPA
PYTHON=/opt/EDB/TPA/tpa-venv/bin/python3 (v3.9.18, venv)
TPA_VENV=/opt/EDB/TPA/tpa-venv
ANSIBLE=/opt/EDB/TPA/tpa-venv/bin/ansible (v2.15.9)
Validated: ea844d1b90295597d080bbf824dbbc6954886cb54ffdb265c7c71b99bedee67b [OK]

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 163

After changing the architecture, run tpaexec upgrade to make the required changes to the cluster.

Changing a cluster from 2q to EDB repositories

The --replace-2q-repositories argument removes any 2ndQuadrant repositories the cluster uses and adds EDB repositories as required to
replace them.

After reconfiguring with this argument, run [tpaexec deploy)(tpaexec-deploy.md) to make the required changes to the cluster.

Output format

The following options control the form of the output:

--describe Shows a description of what would be changed, without changing anything.

--check Validates the changes that would be made and shows any errors any errors or warnings that result from validation, without changing
anything.

--output <filename> Writes the output to a file other than config.yml.

Sample invocation

$ tpaexec reconfigure ~/clusters/speedy\
 --architecture PGD-Always-ON\
 --pgd-proxy-routing local

30 Selective task execution

Using task selectors

You can tell TPA to run only a subset of the tasks that constitute a full deployment using the --excluded_tasks and --included_tasks
options to tpaexec deploy . Each of these arguments is a string treated as a comma-separated list of selectors. Equivalently, you can set the
excluded_tasks and included_tasks variables in config.yml , either for the whole cluster or for the separate instances. In
config.yml , you can use either a comma-separated string or a yaml list.

Tasks matched by excluded_tasks are always excluded. If you specify included_tasks , then non-matching tasks are implicitly excluded.

Some selectors may be used in either list, and some only in the excluded_tasks list, as detailed below. A separate set of selectors is available for
tpaexec test .

Examples

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 164

To deploy without running barman-related tasks:

[tpa]$ tpaexec deploy <clustername> --excluded_tasks barman

To deploy running only repmgr-related tasks:

[tpa]$ tpaexec deploy <clustername> --included_tasks repmgr

To deploy without trying to set hostnames on the instances:

[tpa]$ tpaexec deploy <clustername> --excluded_tasks hostname

To prevent bootstrap and ssh tasks from ever running, put the following into config.yml :

Supported selectors for tpaexec deploy

The following selectors are supported for either inclusion or exclusion:

barman

Tasks related to Barman.

bdr

Tasks related to setting up BDR, including when it is as used within a PGD cluster. If this selector is excluded, TPA will still install and configure
the extension as specified in config.yml, but won't create the node groups or try to join the nodes.

efm

Tasks related to EFM.

etcd

Tasks related to etcd.

first-backup

Tasks which ensure the minimum number of barman backups exist.

haproxy

Tasks related to haproxy.

harp

 cluster_vars:
 excluded_tasks:
 - bootstrap
 -
ssh

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 165

Tasks related to harp.

patroni

Tasks related to patroni.

pem-agent

Tasks related to the PEM agent.

pem-server

Tasks related to the PEM server.

pem-webserver

Tasks related to configuring the web server on a PEM server.

pg-backup-api

Tasks related to Barman's Postgres backup API.

pgbouncer

Tasks related to PgBouncer.

pgd-proxy

Tasks related to PGD Proxy.

pglogical

Tasks related to pglogical.

pkg

Tasks which install packages using the system package manager.

postgres

Tasks related to postgres.

replica

Tasks which are run and instances acting as postgres replicas.

repmgr

Tasks related to repmgr.

restart

Tasks which restart services

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 166

sys

Tasks related to system setup before any tasks specific to postgres or related software.

zabbix-agent

Tasks related to the zabbix agent.

The following selectors are supported only for exclusion:

artifacts

Tasks related to artifacts.

barman-clean

Tasks which clean up the Barman build directory if Barman is being built from source.

bootstrap

Tasks which ensure that python and other minimal dependencies are present before the rest of the deploy runs. Exclude this only if you are sure
you have manually installed the relevant requirements.

build-clean

Tasks which clean up build directories for any software that is being built from source.

build-configure

Tasks which configure any software that is being built from source.

cloudinit

Tasks which are run only on hosts managed by cloud-init.

commit-scopes

Tasks related to configuration of BDR commit scopes.

config

Tasks which create config files.

fs

Tasks related to setting up additional volumes on instances.

hostkeys

Tasks which set up ssh host keys.

hostname

Tasks which set the hostname.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 167

hosts

Tasks which add entries to /etc/hosts

initdb

Tasks which run initdb.

local-repo

Tasks which set up local package repositories.

locale

Tasks which install locale support.

openvpn

Tasks which set up OpenVPN.

pg-backup-api-clean

Tasks which clean up the build directory if the Postgres backup API is being built from source.

pgbouncer-config

Tasks which create configuration files for pgbouncer.

pgpass

Tasks which create the .pgpass file.

postgres-clean

Tasks which clean up the build directory if postgres is being built from source.

replication-sets

Tasks related to witness-only replication sets on a BDR3 cluster.

repmgr-clean

Tasks which clean up the build directory if repmgr is being built from source.

repmgr-configure

Tasks which configure repmgr if it is being built from source.

repo

Tasks which set up package repositories.

rsyslog

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 168

Tasks related to rsyslog.

service

Tasks related to system services, including configuration and restarting.

src

Tasks which build and install packages from source.

ssh

Tasks related to setting up ssh between instances.

sysctl

Tasks which set and reload sysctl settings.

sysstat

Tasks releated to the sysstat service.

tpa

Tasks related to TPA's own files installed on instances.

user

Tasks related to setting up system users.

watchdog

Tasks related to the kernel watchdog on a patroni cluster.

Supported selectors for tpaexec test

The following selectors apply only for execution of tpaexec test :

camo

Tasks related to testing CAMO in a BDR or PGD cluster.

ddl

Tasks related to testing DDL in a BDR or PGD cluster.

fail

Tasks which abort tests if a problem is detected. Exclude this selector to run tests regardless of failures.

pgbench

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 169

Tasks which run pgbench.

sys

Tasks which run system-level tests.

barman, bdr, haproxy, pg-backup-api, pgbouncer, pgd-proxy, postgres, repmgr,

Tasks which test the various software components.

Trusted Postgres Architect

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 170

	1 Trusted Postgres Architect
	Introduction
	What can TPA do?
	How do you use it?
	Configuration
	Provisioning
	Deployment
	Testing
	Incremental changes
	Cluster management
	Extensible through Ansible

	It's just Postgres
	Versioning in TPA
	Backward compatibility

	Getting started

	2 Trusted Postgres Architect release notes
	2.1 Trusted Postgres Architect 23.31 release notes
	2.2 Trusted Postgres Architect 23.30 release notes
	2.3 Trusted Postgres Architect 23.29 release notes
	2.4 Trusted Postgres Architect 23.28 release notes
	2.5 Trusted Postgres Architect 23.27 release notes
	2.6 Trusted Postgres Architect 23.26 release notes
	2.7 Trusted Postgres Architect 23.25 release notes
	2.8 Trusted Postgres Architect 23.24 release notes
	2.9 Trusted Postgres Architect 23.23 release notes
	2.10 Trusted Postgres Architect 23.22 release notes
	2.11 Trusted Postgres Architect 23.21 release notes
	2.12 Trusted Postgres Architect 23.20 release notes
	2.13 Trusted Postgres Architect 23.19 release notes
	2.14 Trusted Postgres Architect 23.18 release notes
	2.15 Trusted Postgres Architect 23.17 release notes
	2.16 Trusted Postgres Architect 23.16 release notes
	2.17 Trusted Postgres Architect 23.15 release notes
	2.18 Trusted Postgres Architect 23.14 release notes
	2.19 Trusted Postgres Architect 23.13 release notes
	2.20 Trusted Postgres Architect 23.12 release notes
	2.21 Trusted Postgres Architect 23.1 to 23.11 release notes
	TPA 23.11
	Notable changes
	Minor changes

	TPA 23.10
	Minor changes
	Bug Fixes

	TPA 23.9
	Bugfixes

	TPA 23.8
	Notable changes
	Minor changes

	TPA 23.7
	Notable changes
	Minor changes
	Bugfixes

	TPA 23.6
	Notable changes
	Bugfixes

	TPA 23.5
	Notable changes

	TPA 23.4
	Bugfixes

	TPA 23.3
	Notable changes
	Minor changes
	Bugfixes

	TPA 23.2
	Notable changes
	Minor changes
	Bugfixes

	TPA 23.1
	Changes to package installation behavior
	Notable changes
	Minor changes
	Bugfixes

	3 TPA installation
	Quick start
	Add repository and install TPA on Debian or Ubuntu
	Add repository and install TPA on RHEL, Rocky, AlmaLinux, or Oracle Linux
	Install additional dependencies
	Verify installation (run as a normal user)

	Where to install TPA
	Installing TPA packages
	Add repository on Debian or Ubuntu
	Add repository on RHEL, Rocky, AlmaLinux or Oracle Linux
	Install on Debian or Ubuntu
	Install on RHEL, Rocky, AlmaLinux, or Oracle Linux

	Setting up the TPA Python environment
	Installing TPA without internet or network access (air-gapped)
	Downloading TPA packages
	Installing without access to a Python package index

	Verifying your TPA installation
	Upgrading TPA
	Ansible versions

	4 Open source TPA
	What is Trusted Postgres Architect (TPA)?
	Next steps
	TPA open source FAQs
	Can I use this if I'm not an EDB customer?
	Can I report an issue?
	Can I contribute?

	5 Installing TPA from source
	Quickstart
	Clone and setup
	Dependencies
	Python 3.9+
	Virtual environment options

	6 A first cluster deployment
	Installing TPA
	Installing Docker
	Cgroups version
	Creating a configuration with TPA
	Provisioning the deployment
	Deploying
	Testing
	Connecting

	7 Cluster configuration
	Quickstart
	Configuration options
	Architecture-specific options
	Platform options
	Owner
	Region
	Network configuration
	Instance type
	Disk space
	Hostnames

	Software selection
	Distribution
	2ndQuadrant and EDB repositories
	Local repository support
	Software versions
	Postgres flavour and version
	Package versions

	Known issue with wildcard use
	Building and installing from source

	Overrides
	Ansible Tower
	Git repository
	Keyring backend for vault password
	Examples

	8 tpaexec provision
	Prerequisites
	Quickstart
	Options
	Accessing the instances
	Generated files

	9 tpaexec deploy
	Prerequisites
	Quickstart
	Selective deployment
	deploy.yml

	10 tpaexec test
	Quickstart

	11 PGD-Always-ON
	Cluster configuration
	Overview of configuration options
	Mandatory options
	Additional options

	More detail about PGD-Always-ON configuration

	12 BDR-Always-ON
	Cluster configuration
	Overview of configuration options
	Mandatory options
	Additional options

	More detail about BDR-Always-ON configuration

	13 M1
	Default layout
	Application and backup failover
	Cluster configuration
	Overview of configuration options
	Mandatory options
	Additional options

	More detail about M1 configuration

	14 aws
	API access setup
	Introduction
	Networking
	Instances

	Configuration
	Regions
	VPC (required)
	AMI (required)
	Subnets (optional)
	Security groups (optional)
	Internet gateways (optional)
	SSH keys (optional)
	S3 bucket (optional)
	Elastic IP addresses
	Instance profile (optional)

	15 bare(-metal servers)
	SSH access
	Distribution support
	IP addresses
	Starting afresh

	16 Docker
	Synopsis
	Operating system selection
	Installing Docker
	CgroupVersion
	Permissions
	Docker container privileges
	Privileged containers
	security_opts and the no-new-privileges flag
	Linux capabilities flags

	Docker storage configuration

	Docker container management

	17 Cluster configuration
	config.yml
	Variables
	Cluster variables
	Instance variables
	instance_defaults
	Locations

	18 Instance configuration
	System-level configuration
	Package repositories
	Package installation
	Other system-level tasks
	Skipping deployment completely

	Postgres
	Version selection
	Installation
	Configuration

	Other components
	Configuring and starting services

	After starting Postgres

	19 Building from source
	Quick start
	Configuration
	Local source directories
	ccache

	Rebuilding

	20 TPA hooks
	Summary
	General-purpose hooks
	pre-deploy
	post-repo
	pre-initdb
	postgres-config
	postgres-config-final
	barman-pre-config
	harp-config
	post-deploy

	PGD hooks
	bdr-pre-node-creation
	bdr-post-group-creation
	bdr-pre-group-join

	Other hooks
	postgres-pre-update, postgres-post-update

	New hooks

	21 Upgrading your cluster
	Introduction
	Configuration
	Upgrading from BDR-Always-ON to PGD-Always-ON
	PGD-Always-ON
	BDR-Always-ON
	M1
	Package version selection

	22 tpaexec switchover
	Example
	Architecture options

	23 BDR/HAProxy server pool management
	Example

	24 tpaexec rehydrate
	Prerequisites
	Example
	Change the configuration
	Start the rehydration

	Rehydrate in phases
	Appendix
	Using awscli to change volume attributes

	25 TPA and Ansible Tower/Ansible Automation Platform
	AAP initial setup
	Add TPA Execution Environment image (admin)
	Create the EDB_SUBSCRIPTION_TOKEN credential type (admin)

	Setting up a cluster
	On the TPA workstation
	Configure
	config.yml modification

	On the AAP UI
	Project
	Inventory
	Credentials
	Template creation

	Use one project for multiple inventory
	Set Allow branch override option
	Define multiple inventories
	Define credentials per inventory

	Update TPA on AAP
	Update TPA workstation package
	Use EE image with same version tag
	Run tpaexec relink on your cluster directory
	Sync project and inventories

	26 TPA, Ansible, and sudo
	Ansible sudo invocations
	Recommendations
	SSH and sudo passwords
	sudo options
	Logging
	Local privileges

	27 TPA - PuTTY configuration guide
	Key conversion
	Locate private key
	Save key as .pem
	Key conversions

	Configure PuTTY

	28 Troubleshooting
	Re-create Python virtual environment
	Strange AWS errors regarding credentials
	Logging
	Cluster test
	TPA server test
	Including or excluding specific tasks

	29 Running TPA in a Docker container
	Quick start
	Installing Docker

	29.1 Managing clusters in a disconnected or air-gapped environment
	Preparation
	Downloading packages
	Copying packages to the target environment
	Deploying in a disconnected environment
	Updating in a disconnected environment

	29.2 Distribution support
	Debian x86
	Ubuntu x86
	Oracle Linux
	RedHat x86
	SLES
	Platform-specific considerations

	29.3 TPA capabilities and supported software
	Supported software

	29.4 Reconciling changes made outside of TPA
	Why might I need to make manual configuration changes?
	Destructive changes
	Major-version Postgres upgrades

	What can happen if changes are not reconciled?
	Non-destructive, non-blocking changes
	Destructive, non-blocking changes
	Destructive, blocking changes

	How to reconcile configuration changes
	Example: parting a PGD node
	Example: removing a PGD node completely
	Example: changing the superuser password
	Example: adding or removing an extension

	29.5 EDB Postgres Distributed configuration
	How TPA approaches PGD installation
	Installation
	Overview of cluster setup
	Instance roles
	Configuration settings
	bdr_database
	bdr_node_group
	bdr_node_groups
	bdr_child_group
	bdr_commit_scopes

	Miscellaneous notes
	Hooks
	Database collations

	Older versions of PGD

	29.6 Barman
	Barman configuration
	Backup scheduling
	SSH keys

	29.7 Configuring EFM
	EFM configuration
	efm_conf_settings
	EFM witness
	Repmgr

	29.8 Configuring haproxy
	Read-only load balancer
	Server options
	Example

	29.9 Configuring HARP
	Installing HARP
	Configuring HARP
	Consensus layer
	etcd
	bdr

	Configuring a separate user for HARP proxy
	Configuring a separate user for HARP manager
	Custom SSL password command
	Configuring the HARP service
	Configuring HARP http(s) health probes

	29.10 Configuring Postgres Enterprise Manager (PEM)
	Supported architectures
	PEM configuration
	Shared PEM server
	Connecting to the PEM UI

	29.11 Configuring pgbouncer
	Databases
	Authentication
	Example

	29.12 Configuring pgd-proxy
	Configuration
	bdr_node_groups
	bdr_node_options
	pgd_proxy_options
	PGD proxy http(s) health probes

	29.13 pglogical configuration
	Introduction
	Publications
	Subscriptions
	Configuration changes
	Interaction with PGD
	Limitations

	29.14 Configuring repmgr
	repmgr configuration
	repmgr on PGD instances

	29.15 How TPA uses 2ndQuadrant and EDB repositories
	Package sources used by TPA
	Authenticating with package sources
	How sources are selected by default
	Specifying EDB 2.0 repositories
	Specifying 2ndQuadrant repositories

	29.16 Configuring EDB Repos 2.0 repositories
	29.17 Configuring 2ndQuadrant repositories
	29.18 Configuring APT repositories
	29.19 Configuring YUM repositories
	29.20 Creating and using a local repository
	Creating a local repository with TPA
	Creating the directory structure
	Populate the repository and generate metadata

	Creating a local repository manually
	Local repo layout
	Populating the repository and generating metadata
	Debian/Ubuntu repository metadata
	RedHat/SLES repository metadata

	How TPA uses the local repository
	Copying the repository
	Repository configuration
	Package installation

	29.21 Installing from source
	Build dependencies

	29.22 Git credentials
	SSH key authentication
	HTTPS username/password authentication

	29.23 Environment
	29.24 Python environment
	Backwards compatibility

	29.25 Configuring /etc/hosts
	29.26 Filesystem configuration
	default_volumes
	Platform AWS
	Platform bare
	Platform Docker
	RAID arrays
	LUKS encryption
	Filesystem creation and mounting

	29.27 Uploading artifacts
	29.28 ssh_key_file
	29.29 Managing SSH host keys
	known_hosts

	29.30 Postgres source installation
	Git repository
	Build customisation

	Additional components
	Package installation

	29.31 Installing packages
	Optional packages
	Removing packages

	29.32 Running initdb
	Separate configuration directory

	29.33 Installing Postgres-related packages
	29.34 SSL Certificates
	29.35 Setting sysctl values
	29.36 Creating Postgres databases
	29.37 Creating Postgres tablespaces
	29.38 postgresql.conf
	postgres_conf_settings
	shared_buffers
	effective_cache_size
	shared_preload_libraries
	Postgres log
	Making changes by hand
	Generating postgresql.conf from scratch

	29.39 pg_hba.conf
	29.40 pg_ident.conf
	29.41 Configuring .pgpass
	29.42 The postgres Unix user
	Shell configuration
	SSH keys
	TLS certificates
	Username

	29.43 Creating Postgres users
	Password generation

	29.44 tpaexec archive-logs
	Prerequisites
	Quickstart
	Generated files

	29.45 tpaexec download-packages
	Usage
	Using the result
	Cleaning up failed downloader container

	29.46 TPA custom commands
	Quickstart
	Example

	29.47 TPA custom tests
	Quickstart
	Example
	Destructive tests

	29.48 Locale
	29.49 Patroni cluster management commands
	Configuration options
	Patroni configuration file settings
	Patroni configuration in TPA config.yml

	Status
	Switchover

	29.50 Adding Postgres extensions
	Default Postgres extensions
	User defined extensions
	TPA recognized extensions

	29.51 tpaexec deprovision
	29.52 tpaexec info
	Usage
	Subcommands

	Example Output

	29.53 tpaexec reconfigure
	Arguments
	Changing a cluster's architecture
	Changing a cluster from 2q to EDB repositories
	Output format
	Sample invocation

	30 Selective task execution
	Using task selectors
	Examples
	Supported selectors for tpaexec deploy
	Supported selectors for tpaexec test

